# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """args for image-to-text generation""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import argparse from utils.args import ArgumentGroup class CustomAction(argparse.Action): """custom action""" def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, " ".join(values)) # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "model configuration and paths.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("init_pretraining_params", str, None, "Init pre-training params which preforms fine-tuning from. If the " "arg 'init_checkpoint' has been set, this argument wouldn't be valid.") model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.") model_g.add_arg("weight_sharing", bool, True, "If set, share weights between word embedding and masked lm.") model_g.add_arg("unimo_vocab_file", str, './model_files/dict/unimo_en.vocab.txt', "unimo vocab") model_g.add_arg("encoder_json_file", str, './model_files/dict/unimo_en.encoder.json', 'bpt map') model_g.add_arg("vocab_bpe_file", str, './model_files/dict/unimo_en.vocab.bpe', "vocab bpe") model_g.add_arg("unimo_config_path", str, "./model_files/config/unimo_base_en.json", "The file to save unimo configuration.") model_g.add_arg("object_file", str, "./data/coco_object_0.35_tot.ids", "The object file for image bounding boxes.") model_g.add_arg("adv_type", str, "villa", "The adversial learning type: freelb_image, freelb_text, villa") model_g.add_arg("adv_step", int, 4, "adv_step") model_g.add_arg("adv_lr", float, 0.05, "adv_lr") model_g.add_arg("norm_type", str, 'l2', "norm_type") model_g.add_arg("adv_max_norm", float, 0.4, "adv_max_norm") model_g.add_arg("adv_init_mag", float, 0.4, "adv_init_mag") model_g.add_arg("adv_kl_weight", float, 1.5, "adv_kl_weight") model_g.add_arg("with_pure_model", bool, True, "whether include the pure model during adv learning") train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 50, "Number of epoches for fine-tuning.") train_g.add_arg("learning_rate", float, 4e-5, "Learning rate used to train with warmup.") train_g.add_arg("lr_scheduler", str, "linear_warmup_decay", "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay']) train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.") train_g.add_arg("warmup_proportion", float, 0.02, "Proportion of training steps to perform linear learning rate warmup for.") train_g.add_arg("save_steps", int, 100000, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 100000, "The steps interval to evaluate model performance.") train_g.add_arg("use_fuse", bool, False, "Whether to use fuse_allreduce_ops.") train_g.add_arg("nccl_comm_num", int, 1, "NCCL comm num.") train_g.add_arg("hierarchical_allreduce_inter_nranks", int, 8, "Hierarchical allreduce inter ranks.") train_g.add_arg("use_hierarchical_allreduce", bool, False, "Use hierarchical allreduce or not.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") train_g.add_arg("use_dynamic_loss_scaling", bool, False, "Whether to use dynamic loss scaling.") train_g.add_arg("init_loss_scaling", float, 128.0, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.") train_g.add_arg("incr_every_n_steps", int, 100, "Increases loss scaling every n consecutive.") train_g.add_arg("decr_every_n_nan_or_inf", int, 2, "Decreases loss scaling every n accumulated steps with nan or inf gradients.") train_g.add_arg("incr_ratio", float, 2.0, "The multiplier to use when increasing the loss scaling.") train_g.add_arg("decr_ratio", float, 0.8, "The less-than-one-multiplier to use when decreasing.") train_g.add_arg("beta1", float, 0.9, "beta1 for adam") train_g.add_arg("beta2", float, 0.98, "beta2 for adam.") train_g.add_arg("epsilon", float, 1e-06, "epsilon for adam.") train_g.add_arg("tgt_type_id", int, 1, "for seq2seq task.") train_g.add_arg("do_decode", bool, False, "for seq2seq task.") train_g.add_arg("label_smooth", float, 0.1, "label smooth") train_g.add_arg("hidden_dropout_prob", float, 0.1, "hidden_dropout_prob") train_g.add_arg("attention_probs_dropout_prob", float, 0.1, "attention_probs_dropout_prob") log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 100, "The steps interval to print loss.") log_g.add_arg("verbose", bool, True, "Whether to output verbose log.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options") data_g.add_arg("task_type", str, "normal", "is task type") data_g.add_arg("train_filelist", str, None, "Path to training data.") data_g.add_arg("test_filelist", str, None, "Path to test data.") data_g.add_arg("valid_filelist", str, None, "Path to validation data.") data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.") data_g.add_arg("max_tgt_len", int, 512, "for seq2seq task.") data_g.add_arg("max_out_len", int, 512, "for seq2seq task.") data_g.add_arg("min_out_len", int, 20, "for seq2seq task.") data_g.add_arg("block_trigram", bool, True, "utilize trigram blocking during beam search") data_g.add_arg("beam_size", int, 5, "for seq2seq task.") data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training.") data_g.add_arg("pred_batch_size", int, 0, "Total examples' number in batch for training.") data_g.add_arg("do_lower_case", bool, True, "Whether to lower case the input text. Should be True for uncased models and False for cased models.") data_g.add_arg("length_penalty", float, 0.6, "length_penalty") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("visualdl_log", bool, False, "If set, use visualdl_log on paddlecloud.") run_type_g.add_arg("is_distributed", bool, True, "If set, then start distributed training.") run_type_g.add_arg("use_fast_executor", bool, True, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg("num_iteration_per_drop_scope", int, 1, "Iteration intervals to drop scope.") run_type_g.add_arg("do_train", bool, True, "Whether to perform training.") run_type_g.add_arg("do_val", bool, True, "Whether to perform evaluation on dev data set.") run_type_g.add_arg("do_test", bool, True, "Whether to perform evaluation on test data set.") run_type_g.add_arg("do_pred", bool, True, "Whether to perform evaluation on pred data set.") run_type_g.add_arg("use_multi_gpu_test", bool, True, "Whether to perform evaluation using multiple gpu cards") run_type_g.add_arg("save_and_valid_by_epoch", bool, False, "save_and_valid_by_epoch") run_type_g.add_arg("eval_script", action=CustomAction, type=str, nargs='+', help="eval_script", default=None) run_type_g.add_arg("eval_mertrics", str, "", "eval_mertrics") run_type_g.add_arg("random_seed", int, 0, "Random seed.") image_g = ArgumentGroup(parser, "image", "image configuration options") image_g.add_arg("image_embedding_size", int, 2048, "Image feature size==2048.") image_g.add_arg("max_img_len", int, 37, "Image feature size==2048.") image_g.add_arg("max_obj_len", int, 50, "max num of object size.") # yapf: enable