# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """args for classification task""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from utils.args import ArgumentGroup # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "model configuration and paths.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("init_pretraining_params", str, None, "Init pre-training params which preforms fine-tuning from. If the " "arg 'init_checkpoint' has been set, this argument wouldn't be valid.") model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.") model_g.add_arg("save_checkpoints", bool, True, "Whether to save checkpoints") model_g.add_arg("weight_sharing", bool, True, "If set, share weights between word embedding and masked lm.") model_g.add_arg("unimo_vocab_file", str, './model_files/dict/unimo_en.vocab.txt', "unimo vocab") model_g.add_arg("encoder_json_file", str, './model_files/dict/unimo_en.encoder.json', 'bpt map') model_g.add_arg("vocab_bpe_file", str, './model_files/dict/unimo_en.vocab.bpe', "vocab bpe") model_g.add_arg("unimo_config_path", str, "./model_files/config/unimo_base_en.json", "The file to save unimo configuration.") train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.") train_g.add_arg("learning_rate", float, 5e-5, "Learning rate used to train with warmup.") train_g.add_arg("lr_scheduler", str, "linear_warmup_decay", "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay']) train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.") train_g.add_arg("warmup_proportion", float, 0.1, "Proportion of training steps to perform linear learning rate warmup for.") train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.") train_g.add_arg("nccl_comm_num", int, 1, "NCCL comm num.") train_g.add_arg("hierarchical_allreduce_inter_nranks", int, 8, "Hierarchical allreduce inter ranks.") train_g.add_arg("use_hierarchical_allreduce", bool, False, "Use hierarchical allreduce or not.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") train_g.add_arg("use_dynamic_loss_scaling", bool, False, "Whether to use dynamic loss scaling.") train_g.add_arg("init_loss_scaling", float, 1.0, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.") train_g.add_arg("incr_every_n_steps", int, 100, "Increases loss scaling every n consecutive.") train_g.add_arg("decr_every_n_nan_or_inf", int, 2, "Decreases loss scaling every n accumulated steps with nan or inf gradients.") train_g.add_arg("incr_ratio", float, 2.0, "The multiplier to use when increasing the loss scaling.") train_g.add_arg("decr_ratio", float, 0.8, "The less-than-one-multiplier to use when decreasing.") train_g.add_arg("beta1", float, 0.9, "beta1 for adam") train_g.add_arg("beta2", float, 0.98, "beta2 for adam.") train_g.add_arg("epsilon", float, 1e-06, "epsilon for adam.") log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options") data_g.add_arg("train_set", str, None, "Path to training data.") data_g.add_arg("test_set", str, None, "Path to test data.") data_g.add_arg("test_hard_set", str, None, "Path to test_hard data.") data_g.add_arg("dev_set", str, None, "Path to validation data.") data_g.add_arg("dev_hard_set", str, None, "Path to validation_hard data.") data_g.add_arg("diagnostic_set", str, None, "Path to diagnostic data.") data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.") data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training. see also --in_tokens.") data_g.add_arg("in_tokens", bool, False, "If set, the batch size will be the maximum number of tokens in one batch. " "Otherwise, it will be the maximum number of examples in one batch.") data_g.add_arg("do_lower_case", bool, True, "Whether to lower case the input text. Should be True for uncased models and False for cased models.") data_g.add_arg("random_seed", int, 0, "Random seed.") data_g.add_arg("num_labels", int, 2, "label number") data_g.add_arg("max_query_length", int, 64, "Max query length.") data_g.add_arg("max_answer_length", int, 100, "Max answer length.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.") run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg("num_iteration_per_drop_scope", int, 10, "Iteration intervals to drop scope.") run_type_g.add_arg("do_train", bool, False, "Whether to perform training.") run_type_g.add_arg("do_val", bool, False, "Whether to perform evaluation on dev data set.") run_type_g.add_arg("do_val_hard", bool, False, "Whether to perform evaluation on dev hard data set.") run_type_g.add_arg("do_test", bool, False, "Whether to perform evaluation on test data set.") run_type_g.add_arg("do_test_hard", bool, False, "Whether to perform evaluation on test hard data set.") run_type_g.add_arg("do_pred", bool, False, "Whether to predict on test data set.") run_type_g.add_arg("do_pred_hard", bool, False, "Whether to predict on test hard data set.") run_type_g.add_arg("do_diagnostic", bool, False, "Whether to predict on diagnostic data set.") run_type_g.add_arg("pred_save", str, "./output/predict/test", "Whether to predict on test data set.") run_type_g.add_arg("use_multi_gpu_test", bool, False, "Whether to perform evaluation using multiple gpu cards") run_type_g.add_arg("eval_mertrics", str, "simple_accuracy", "eval_mertrics") # yapf: enable