set -eux export FLAGS_eager_delete_tensor_gb=0.0 export FLAGS_fraction_of_gpu_memory_to_use=0.98 export FLAGS_sync_nccl_allreduce=1 # task task_data_path="./data/finetune/task_data/" task_name="iflytek" # model setup is_zh="True" repeat_input="False" train_all="Fasle" eval_all="False" use_vars="False" use_amp="False" use_recompute="False" rel_pos_params_sharing="False" lr_scheduler="linear_warmup_decay" vocab_path="./configs/base/zh/vocab.txt" config_path="./configs/base/zh/ernie_config.json" init_model_checkpoint="" init_model_pretraining="" # args setup epoch=5 warmup=0.1 max_len=512 lr_rate=1.5e-4 batch_size=16 weight_decay=0.01 num_labels=119 save_steps=10000 validation_steps=100 layer_decay_ratio=0.8 init_loss_scaling=32768 PADDLE_TRAINERS=`hostname -i` PADDLE_TRAINER_ID="0" POD_IP=`hostname -i` selected_gpus="0" mkdir -p log distributed_args="--node_ips ${PADDLE_TRAINERS} --node_id ${PADDLE_TRAINER_ID} --current_node_ip ${POD_IP} --nproc_per_node 1 --selected_gpus ${selected_gpus}" python -u ./lanch.py ${distributed_args} \ ./run_classifier.py --use_cuda true \ --is_distributed true \ --use_fast_executor ${e_executor:-"true"} \ --tokenizer ${TOKENIZER:-"FullTokenizer"} \ --use_amp ${use_amp:-"false"} \ --do_train true \ --do_val true \ --do_test false \ --batch_size ${batch_size} \ --init_checkpoint ${init_model_checkpoint:-""} \ --init_pretraining_params ${init_model_pretraining:-""} \ --label_map_config "" \ --train_set ${task_data_path}/${task_name}/train/1 \ --dev_set ${task_data_path}/${task_name}/dev/1 \ --test_set ${task_data_path}/${task_name}/test/1 \ --vocab_path ${vocab_path} \ --checkpoints ./output \ --save_steps ${save_steps} \ --weight_decay ${weight_decay} \ --warmup_proportion ${warmup} \ --validation_steps ${validation_steps} \ --epoch ${epoch} \ --max_seq_len ${max_len} \ --ernie_config_path ${config_path} \ --learning_rate ${lr_rate} \ --skip_steps 10 \ --num_iteration_per_drop_scope 10 \ --layer_decay_ratio ${layer_decay_ratio:-"0.8"} \ --num_labels ${num_labels} \ --is_zh ${is_zh:-"True"} \ --repeat_input ${repeat_input:-"False"} \ --train_all ${train_all:-"False"} \ --eval_all ${eval_all:-"False"} \ --use_vars ${use_vars:-"False"} \ --init_loss_scaling ${init_loss_scaling:-32768} \ --use_recompute ${use_recompute:-"False"} \ --random_seed 1