# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ args defination and default value """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import argparse from utils.args import ArgumentGroup, print_arguments # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "model configuration and paths.") model_g.add_arg("ernie_config_path", str, "./config/ernie_config.json", "json file path for ernie model config.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.") model_g.add_arg("task_name", str, "vcr", "Task to finetune on ERNIE-ViL") train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 100, "Number of epoches for training.") train_g.add_arg("learning_rate", float, 0.0001, "Learning rate used to train with warmup.") train_g.add_arg("lr_scheduler", str, "linear_warmup_decay", "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay', 'manual_warmup_decay']) train_g.add_arg("decay_steps", str, "", "learning rate decay steps, list with ;") train_g.add_arg("lr_decay_ratio", float, 0.1, "learning rate decay ratio, used with manual_warmup_decay") train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.") train_g.add_arg("num_train_steps", int, 1000000, "Total steps to perform pretraining.") train_g.add_arg("warmup_steps", int, 0, "Total steps to perform warmup when pretraining.") train_g.add_arg("save_steps", int, 100, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 6000, "The steps interval to evaluate model performance.") train_g.add_arg("use_fuse", bool, False, "Whether to use fuse_allreduce_ops.") train_g.add_arg("nccl_comm_num", int, 1, "NCCL comm num.") train_g.add_arg("hierarchical_allreduce_inter_nranks", int, 8, "Hierarchical allreduce inter ranks.") train_g.add_arg("use_hierarchical_allreduce", bool, False, "Use hierarchical allreduce or not.") train_g.add_arg("use_gpu", bool, True, "Whether to gpu.") log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options") data_g.add_arg("result_file", str, "./res_tmp", "file to storage results") data_g.add_arg("lr_decay_dict_file", str, "", "learning rate decay files.") data_g.add_arg("train_filelist", str, "", "Path to training filelist.") data_g.add_arg("valid_filelist", str, "", "Path to valid filelist.") data_g.add_arg("test_filelist", str, "", "Path to test filelist.") data_g.add_arg("vocab_path", str, "./config/vocab.txt", "Vocabulary path.") data_g.add_arg("test_split", str, "val", "test of sub tasks, val or test") data_g.add_arg("max_seq_len", int, 128, "Number of words of the longest seqence.") data_g.add_arg("max_img_len", int, 100, "Number of image rois of the longest seqence.") data_g.add_arg("feature_size", int, 2048, "Number of roi feature size of image.") data_g.add_arg("fusion_method", str, "sum", "Number of roi feature size of image.") data_g.add_arg("batch_size", int, 16, "Total examples' number in batch for training. see also --in_tokens.") data_g.add_arg("task_group_json", str, "", "Path to task json") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg("do_train", bool, False, "Whether to perform evaluation on test data set.") run_type_g.add_arg("do_test", bool, False, "Whether to perform evaluation on test data set.") run_type_g.add_arg("output_file", str, "", "The output file to save model output.") # yapf: enable