# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import division import os import numpy as np import types import gzip import logging import re import six import collections import tokenization import paddle import paddle.fluid as fluid from batching import prepare_batch_data class DataReader(object): def __init__(self, data_dir, vocab_path, batch_size=4096, in_tokens=True, max_seq_len=512, shuffle_files=True, epoch=100, voc_size=0, is_test=False, generate_neg_sample=False): self.vocab = self.load_vocab(vocab_path) self.data_dir = data_dir self.batch_size = batch_size self.in_tokens = in_tokens self.shuffle_files = shuffle_files self.epoch = epoch self.current_epoch = 0 self.current_file_index = 0 self.total_file = 0 self.current_file = None self.voc_size = voc_size self.max_seq_len = max_seq_len self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.mask_id = self.vocab["[MASK]"] self.is_test = is_test self.generate_neg_sample = generate_neg_sample if self.in_tokens: assert self.batch_size >= self.max_seq_len, "The number of " \ "tokens in batch should not be smaller than max seq length." if self.is_test: self.epoch = 1 self.shuffle_files = False def get_progress(self): """return current progress of traning data """ return self.current_epoch, self.current_file_index, self.total_file, self.current_file def parse_line(self, line, max_seq_len=512): """ parse one line to token_ids, sentence_ids, pos_ids, label """ line = line.strip().split(";") assert len(line) == 4, "One sample must have 4 fields!" (token_ids, sent_ids, pos_ids, label) = line token_ids = [int(token) for token in token_ids.split(" ")] sent_ids = [int(token) for token in sent_ids.split(" ")] pos_ids = [int(token) for token in pos_ids.split(" ")] assert len(token_ids) == len(sent_ids) == len( pos_ids ), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids)" label = int(label) if len(token_ids) > max_seq_len: return None return [token_ids, sent_ids, pos_ids, label] def read_file(self, file): assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file file_path = self.data_dir + "/" + file with gzip.open(file_path, "rb") as f: for line in f: parsed_line = self.parse_line( line, max_seq_len=self.max_seq_len) if parsed_line is None: continue yield parsed_line def convert_to_unicode(self, text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(self, vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() fin = open(vocab_file) for num, line in enumerate(fin): items = self.convert_to_unicode(line.strip()).split("\t") if len(items) > 2: break token = items[0] index = items[1] if len(items) == 2 else num token = token.strip() vocab[token] = int(index) return vocab def random_pair_neg_samples(self, pos_samples): """ randomly generate negtive samples using pos_samples Args: pos_samples: list of positive samples Returns: neg_samples: list of negtive samples """ np.random.shuffle(pos_samples) num_sample = len(pos_samples) neg_samples = [] miss_num = 0 for i in range(num_sample): pair_index = (i + 1) % num_sample origin_src_ids = pos_samples[i][0] origin_sep_index = origin_src_ids.index(2) pair_src_ids = pos_samples[pair_index][0] pair_sep_index = pair_src_ids.index(2) src_ids = origin_src_ids[:origin_sep_index + 1] + pair_src_ids[ pair_sep_index + 1:] if len(src_ids) >= self.max_seq_len: miss_num += 1 continue sent_ids = [0] * len(origin_src_ids[:origin_sep_index + 1]) + [ 1 ] * len(pair_src_ids[pair_sep_index + 1:]) pos_ids = list(range(len(src_ids))) neg_sample = [src_ids, sent_ids, pos_ids, 0] assert len(src_ids) == len(sent_ids) == len( pos_ids ), "[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True" neg_samples.append(neg_sample) return neg_samples, miss_num def mixin_negtive_samples(self, pos_sample_generator, buffer=1000): """ 1. generate negtive samples by randomly group sentence_1 and sentence_2 of positive samples 2. combine negtive samples and positive samples Args: pos_sample_generator: a generator producing a parsed positive sample, which is a list: [token_ids, sent_ids, pos_ids, 1] Returns: sample: one sample from shuffled positive samples and negtive samples """ pos_samples = [] num_total_miss = 0 pos_sample_num = 0 try: while True: while len(pos_samples) < buffer: pos_sample = next(pos_sample_generator) label = pos_sample[3] assert label == 1, "positive sample's label must be 1" pos_samples.append(pos_sample) pos_sample_num += 1 neg_samples, miss_num = self.random_pair_neg_samples( pos_samples) num_total_miss += miss_num samples = pos_samples + neg_samples pos_samples = [] np.random.shuffle(samples) for sample in samples: yield sample except StopIteration: print("stopiteration: reach end of file") if len(pos_samples) == 1: yield pos_samples[0] elif len(pos_samples) == 0: yield None else: neg_samples, miss_num = self.random_pair_neg_samples( pos_samples) num_total_miss += miss_num samples = pos_samples + neg_samples pos_samples = [] np.random.shuffle(samples) for sample in samples: yield sample print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" % (num_total_miss, pos_sample_num * 2, num_total_miss / (pos_sample_num * 2))) def data_generator(self): """ data_generator """ files = os.listdir(self.data_dir) self.total_file = len(files) assert self.total_file > 0, "[Error] data_dir is empty" def wrapper(): def reader(): for epoch in range(self.epoch): self.current_epoch = epoch + 1 if self.shuffle_files: np.random.shuffle(files) for index, file in enumerate(files): self.current_file_index = index + 1 self.current_file = file sample_generator = self.read_file(file) if not self.is_test and self.generate_neg_sample: sample_generator = self.mixin_negtive_samples( sample_generator) for sample in sample_generator: if sample is None: continue yield sample def batch_reader(reader, batch_size, in_tokens): batch, total_token_num, max_len = [], 0, 0 for parsed_line in reader(): token_ids, sent_ids, pos_ids, label = parsed_line max_len = max(max_len, len(token_ids)) if in_tokens: to_append = (len(batch) + 1) * max_len <= batch_size else: to_append = len(batch) < batch_size if to_append: batch.append(parsed_line) total_token_num += len(token_ids) else: yield batch, total_token_num batch, total_token_num, max_len = [parsed_line], len( token_ids), len(token_ids) if len(batch) > 0: yield batch, total_token_num for batch_data, total_token_num in batch_reader( reader, self.batch_size, self.in_tokens): yield prepare_batch_data( batch_data, total_token_num, voc_size=self.voc_size, pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, return_attn_bias=True, return_max_len=False, return_num_token=False) return wrapper if __name__ == "__main__": pass