# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """multi process to test""" import os import json import time import six import math import subprocess #import commands import collections import logging import numpy as np class MultiProcessEvalForMrc(object): """multi process test for mrc tasks""" def __init__(self, output_path, eval_phase, dev_count, gpu_id, tokenizer): self.output_path = output_path self.eval_phase = eval_phase self.dev_count = dev_count self.gpu_id = gpu_id self.tokenizer = tokenizer if not os.path.exists(self.output_path): os.makedirs(self.output_path) if not os.path.exists("./output"): os.makedirs('./output') self.output_prediction_file = os.path.join('./output', self.eval_phase + "_predictions.json") self.output_nbest_file = os.path.join('./output', self.eval_phase + "_nbest_predictions.json") def write_result(self, all_results): """write result to hard disk""" outfile = self.output_path + "/" + self.eval_phase outfile_part = outfile + ".part" + str(self.gpu_id) writer = open(outfile_part, "w") save_dict = json.dumps(all_results) writer.write(save_dict) writer.close() tmp_writer = open(self.output_path + "/" + self.eval_phase + "_dec_finish." + str(self.gpu_id), "w") tmp_writer.close() def concat_result(self, RawResult): """read result from hard disk and concat them""" outfile = self.output_path + "/" + self.eval_phase all_results_read = [] while True: ret = subprocess.check_output(['find', self.output_path, '-maxdepth', '1', '-name', self.eval_phase + '_dec_finish.*']) #_, ret = commands.getstatusoutput('find ' + self.output_path + \ # ' -maxdepth 1 -name ' + self.eval_phase + '"_dec_finish.*"') if six.PY3: ret = ret.decode() ret = ret.rstrip().split("\n") if len(ret) != self.dev_count: time.sleep(1) continue for dev_cnt in range(self.dev_count): fin_read = open(outfile + ".part" + str(dev_cnt), "rb") cur_rawresult = json.loads(fin_read.read()) for tp in cur_rawresult: assert len(tp) == 3 all_results_read.append( RawResult( unique_id=tp[0], start_logits=tp[1], end_logits=tp[2])) #subprocess.check_output(["rm ", outfile + ".part*"]) #subprocess.check_output(["rm ", self.output_path + "/" + self.eval_phase + "_dec_finish.*"]) #commands.getstatusoutput("rm " + outfile + ".part*") #commands.getstatusoutput("rm " + self.output_path + "/" + self.eval_phase + "_dec_finish.*") os.system("rm " + outfile + "*.part*") os.system("rm " + self.output_path + "/" + self.eval_phase + "_dec_finish.*") break return all_results_read def write_predictions(self, all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file): """Write final predictions to the json file and log-odds of null if needed.""" logging.info("Writing predictions to: %s" % (output_prediction_file)) logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", [ "feature_index", "start_index", "end_index", "start_logit", "end_logit" ]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.qid] start_indexes = self._get_best_indexes(result.start_logits, n_best_size) end_indexes = self._get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1 )] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = "".join(orig_tokens) final_text = self.get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction( text="empty", start_logit=0.0, end_logit=0.0)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = self._compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") def get_final_text(self, pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tok_text = " ".join(self.tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(self, logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted( enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(self, scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class MultiProcessEvalForErnieDoc(object): """multi process test for mrc tasks""" def __init__(self, output_path, eval_phase, dev_count, gpu_id): self.output_path = output_path self.eval_phase = eval_phase self.dev_count = dev_count self.gpu_id = gpu_id if not os.path.exists(self.output_path): os.makedirs(self.output_path) if not os.path.exists("./output"): os.makedirs('./output') self.output_prediction_file = os.path.join('./output', self.eval_phase + "_predictions.json") self.output_nbest_file = os.path.join('./output', self.eval_phase + "_nbest_predictions.json") def write_result(self, all_results): """write result to hard disk""" outfile = self.output_path + "/" + self.eval_phase outfile_part = outfile + ".part" + str(self.gpu_id) writer = open(outfile_part, "w") save_dict = json.dumps(all_results) writer.write(save_dict) writer.close() tmp_writer = open(self.output_path + "/" + self.eval_phase + "_dec_finish." + str(self.gpu_id), "w") tmp_writer.close() def concat_result(self, RawResult): """read result from hard disk and concat them""" outfile = self.output_path + "/" + self.eval_phase all_results_read = [] while True: ret = subprocess.check_output(['find', self.output_path, '-maxdepth', '1', '-name', self.eval_phase + '_dec_finish.*']) #_, ret = commands.getstatusoutput('find ' + self.output_path + \ # ' -maxdepth 1 -name ' + self.eval_phase + '"_dec_finish.*"') if six.PY3: ret = ret.decode() ret = ret.rstrip().split("\n") if len(ret) != self.dev_count: time.sleep(1) continue for dev_cnt in range(self.dev_count): fin_read = open(outfile + ".part" + str(dev_cnt), "rb") cur_rawresult = json.loads(fin_read.read()) for tp in cur_rawresult: assert len(tp) == 3 all_results_read.append( RawResult( unique_id=tp[0], prob=tp[1], label=tp[2])) #subprocess.check_output(["rm ", outfile + ".part*"]) #subprocess.check_output(["rm ", self.output_path + "/" + self.eval_phase + "_dec_finish.*"]) #commands.getstatusoutput("rm " + outfile + ".part*") #commands.getstatusoutput("rm " + self.output_path + "/" + self.eval_phase + "_dec_finish.*") os.system("rm " + outfile + "*.part*") os.system("rm " + self.output_path + "/" + self.eval_phase + "_dec_finish.*") break return all_results_read def write_predictions(self, all_results): """Write final predictions to the json file and log-odds of null if needed.""" unique_id_to_result = collections.defaultdict(list) for result in all_results: unique_id_to_result[result.unique_id].append(result) print("data num: %d" % (len(unique_id_to_result))) all_probs = [] all_labels = [] for key, value in unique_id_to_result.items(): prob_for_one_sample = [result.prob for result in value] label_for_one_sample = [result.label for result in value] assert len(set(label_for_one_sample)) == 1 #prob_emb = np.sum(np.array(prob_for_one_sample), axis=0).tolist() prob_emb = np.mean(np.array(prob_for_one_sample), axis=0).tolist() all_probs.append(prob_emb) all_labels.append(list(set(label_for_one_sample))) assert len(all_labels) == len(all_probs) all_labels = np.array(all_labels).astype("float32") all_probs = np.array(all_probs).astype("float32") return len(unique_id_to_result), all_labels, all_probs