# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Load classifier's checkpoint to do prediction or save inference model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import argparse import numpy as np import paddle.fluid as fluid import reader.cls as reader from model.bert import BertConfig from model.classifier import create_model from utils.args import ArgumentGroup, print_arguments from utils.init import init_pretraining_params # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "options to init, resume and save model.") model_g.add_arg("bert_config_path", str, None, "Path to the json file for bert model config.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("save_inference_model_path", str, None, "If set, save the inference model to this path.") model_g.add_arg("use_fp16", bool, False, "Whether to resume parameters from fp16 checkpoint.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options.") data_g.add_arg("data_dir", str, None, "Directory to test data.") data_g.add_arg("vocab_path", str, None, "Vocabulary path.") data_g.add_arg("max_seq_len", int, 128, "Number of words of the longest seqence.") data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training. see also --in_tokens.") data_g.add_arg("in_tokens", bool, False, "If set, the batch size will be the maximum number of tokens in one batch. " "Otherwise, it will be the maximum number of examples in one batch.") data_g.add_arg("do_lower_case", bool, True, "Whether to lower case the input text. Should be True for uncased models and False for cased models.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("task_name", str, None, "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.") run_type_g.add_arg("do_prediction", bool, True, "Whether to do prediction on test set.") args = parser.parse_args() # yapf: enable. def main(args): bert_config = BertConfig(args.bert_config_path) bert_config.print_config() task_name = args.task_name.lower() processors = { 'xnli': reader.XnliProcessor, 'cola': reader.ColaProcessor, 'mrpc': reader.MrpcProcessor, 'mnli': reader.MnliProcessor, } processor = processors[task_name](data_dir=args.data_dir, vocab_path=args.vocab_path, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=False) num_labels = len(processor.get_labels()) predict_prog = fluid.Program() predict_startup = fluid.Program() with fluid.program_guard(predict_prog, predict_startup): with fluid.unique_name.guard(): predict_pyreader, probs, feed_target_names = create_model( args, pyreader_name='predict_reader', bert_config=bert_config, num_labels=num_labels, is_prediction=True) predict_prog = predict_prog.clone(for_test=True) if args.use_cuda: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(predict_startup) if args.init_checkpoint: init_pretraining_params(exe, args.init_checkpoint, predict_prog) else: raise ValueError("args 'init_checkpoint' should be set for prediction!") # Due to the design that ParallelExecutor would drop small batches (mostly the last batch) # So using ParallelExecutor may left some data unpredicted # if prediction of each and every example is needed, please use Executor instead predict_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, main_program=predict_prog) predict_pyreader.decorate_tensor_provider( processor.data_generator( batch_size=args.batch_size, phase='test', epoch=1, shuffle=False)) predict_pyreader.start() all_results = [] time_begin = time.time() while True: try: results = predict_exe.run(fetch_list=[probs.name]) all_results.extend(results[0]) except fluid.core.EOFException: predict_pyreader.reset() break time_end = time.time() np.set_printoptions(precision=4, suppress=True) print("-------------- prediction results --------------") print("example_id\t" + ' '.join(processor.get_labels())) for index, result in enumerate(all_results): print(str(index) + '\t{}'.format(result)) if args.save_inference_model_path: _, ckpt_dir = os.path.split(args.init_checkpoint.rstrip('/')) dir_name = ckpt_dir + '_inference_model' model_path = os.path.join(args.save_inference_model_path, dir_name) print("save inference model to %s" % model_path) fluid.io.save_inference_model( model_path, feed_target_names, [probs], exe, main_program=predict_prog) if __name__ == '__main__': print_arguments(args) main(args)