# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import os import time import argparse import numpy as np import logging import multiprocessing # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. os.environ['FLAGS_eager_delete_tensor_gb'] = '0' # enable gc import paddle.fluid as fluid from paddle.fluid.core import PaddleBuf from paddle.fluid.core import PaddleDType from paddle.fluid.core import PaddleTensor from paddle.fluid.core import AnalysisConfig from paddle.fluid.core import create_paddle_predictor from reader.task_reader import ClassifyReader from model.ernie import ErnieConfig from finetune.classifier import create_model from utils.args import print_arguments, check_cuda, prepare_logger, ArgumentGroup from utils.init import init_pretraining_params from finetune_args import parser # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "options to init, resume and save model.") model_g.add_arg("ernie_config_path", str, None, "Path to the json file for ernie model config.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("save_inference_model_path", str, "inference_model", "If set, save the inference model to this path.") model_g.add_arg("use_fp16", bool, False, "Whether to resume parameters from fp16 checkpoint.") model_g.add_arg("num_labels", int, 2, "num labels for classify") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options.") data_g.add_arg("predict_set", str, None, "Predict set file") data_g.add_arg("vocab_path", str, None, "Vocabulary path.") data_g.add_arg("label_map_config", str, None, "Label_map_config json file.") data_g.add_arg("max_seq_len", int, 128, "Number of words of the longest seqence.") data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training. see also --in_tokens.") data_g.add_arg("do_lower_case", bool, True, "Whether to lower case the input text. Should be True for uncased models and False for cased models.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("do_prediction", bool, True, "Whether to do prediction on test set.") args = parser.parse_args() log = logging.getLogger() # yapf: enable. def main(args): ernie_config = ErnieConfig(args.ernie_config_path) ernie_config.print_config() reader = ClassifyReader( vocab_path=args.vocab_path, label_map_config=args.label_map_config, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=False, is_inference=True) predict_prog = fluid.Program() predict_startup = fluid.Program() with fluid.program_guard(predict_prog, predict_startup): with fluid.unique_name.guard(): predict_pyreader, probs, feed_target_names = create_model( args, pyreader_name='predict_reader', ernie_config=ernie_config, is_classify=True, is_prediction=True) predict_prog = predict_prog.clone(for_test=True) if args.use_cuda: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(predict_startup) if args.init_checkpoint: init_pretraining_params(exe, args.init_checkpoint, predict_prog) else: raise ValueError("args 'init_checkpoint' should be set for prediction!") assert args.save_inference_model_path, "args save_inference_model_path should be set for prediction" _, ckpt_dir = os.path.split(args.init_checkpoint.rstrip('/')) dir_name = ckpt_dir + '_inference_model' model_path = os.path.join(args.save_inference_model_path, dir_name) log.info("save inference model to %s" % model_path) fluid.io.save_inference_model( model_path, feed_target_names, [probs], exe, main_program=predict_prog) # Set config #config = AnalysisConfig(args.model_dir) #config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "")) config = AnalysisConfig(model_path) if not args.use_cuda: log.info("disable gpu") config.disable_gpu() config.switch_ir_optim(True) else: log.info("using gpu") config.enable_use_gpu(1024) # Create PaddlePredictor predictor = create_paddle_predictor(config) predict_data_generator = reader.data_generator( input_file=args.predict_set, batch_size=args.batch_size, epoch=1, shuffle=False) log.info("-------------- prediction results --------------") np.set_printoptions(precision=4, suppress=True) index = 0 total_time = 0 for sample in predict_data_generator(): src_ids = sample[0] sent_ids = sample[1] pos_ids = sample[2] task_ids = sample[3] input_mask = sample[4] inputs = [array2tensor(ndarray) for ndarray in [src_ids, sent_ids, pos_ids, input_mask]] begin_time = time.time() outputs = predictor.run(inputs) end_time = time.time() total_time += end_time - begin_time # parse outputs output = outputs[0] batch_result = output.as_ndarray() for single_example_probs in batch_result: print('\t'.join(map(str, single_example_probs.tolist()))) index += 1 log.info("qps:{}\ttotal_time:{}\ttotal_example:{}\tbatch_size:{}".format(index/total_time, total_time, index, args.batch_size)) def array2tensor(ndarray): """ convert numpy array to PaddleTensor""" assert isinstance(ndarray, np.ndarray), "input type must be np.ndarray" tensor = PaddleTensor(data=ndarray) return tensor if __name__ == '__main__': prepare_logger(log) print_arguments(args) main(args)