未验证 提交 ef8879f6 编写于 作者: M Meiyim 提交者: GitHub

Dygraph fix2 (#455)

* remove redundent dep

* + github stale.yml

* update seq2seq

* remove paddle from `requirements.txt`; add paddle version check

* rename zh/en readme
上级 e7a1ce10
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 60
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 7
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: wontfix
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Feel free to reopen it.
Thank you for your contributions.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: false
English|[简体中文](./README.md) English|[简体中文](./README.zh.md)
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone.png) ![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone.png)
...@@ -76,10 +76,14 @@ Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/inde ...@@ -76,10 +76,14 @@ Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/inde
# Setup # Setup
##### 1. install ernie ##### 1. install PaddlePaddle
This repo requires PaddlePaddle 1.7.0+, please see [here](https://www.paddlepaddle.org.cn/install/quick) for installaton instruction.
##### 2. install ernie
```script ```script
pip install paddle-ernie==0.0.1.dev1 pip install paddle-ernie
``` ```
or or
...@@ -87,7 +91,7 @@ or ...@@ -87,7 +91,7 @@ or
```shell ```shell
git clone -b dygraph https://github.com/PaddlePaddle/ERNIE.git --single-branch git clone -b dygraph https://github.com/PaddlePaddle/ERNIE.git --single-branch
cd ERNIE cd ERNIE
pip install -r requirement.txt pip install -r requirements.txt
pip setup.py -e . pip setup.py -e .
``` ```
......
[English](./README.eng.md)|简体中文
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone.png)
ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在情感分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答等16个公开数据集上全面显著超越世界领先技术,在国际权威的通用语言理解评估基准GLUE上,得分首次突破90分,获得全球第一。在今年3月落下帷幕的全球最大语义评测SemEval 2020上,ERNIE摘得5项世界冠军, 该技术也被全球顶级科技商业杂志《麻省理工科技评论》官方网站报道,相关创新成果也被国际顶级学术会议AAAI、IJCAI收录。ERNIE在工业界得到了大规模应用,如搜索引擎、新闻推荐、广告系统、语音交互、智能客服等。
**提醒: ERNIE老版本代码已经迁移至[repro分支](https://github.com/PaddlePaddle/ERNIE/tree/repro),欢迎使用我们全新升级的基于动静结合的新版ERNIE套件进行开发。另外,也欢迎上[EasyDL](https://ai.baidu.com/easydl/pro)体验更丰富的功能(如ERNIE 2.0、ERNIE 2.1、ERNIE领域模型等)。**
# 新闻
- 2020.5.20:
- 欢迎试用`动态图`实现的 ERNIE:
- 基于[PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8)使用 ERNIE 进行 Pretrain 和 Finetune.
- 动态执行, 所见即所得。
- 大规模分布式训练。
- 易于部署。
- 通过Aistudio 教程快速入门NLP。
- 向后兼容老版 checkpoint。
- `ERNIE-GEN` 模型正式开源! ([点击进入](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
- 最强文本生成预训练模型正式开源,相关工作已被 `IJCAI-2020` 收录。
- 首次把 ERNIE 预训练技术能力扩展至文本生成领域,在多个典型任务上取得最佳。
- 您现在即可下载论文报告的所有模型(包含 [`base/large/large-160G`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen/README.zh.md#预训练模型))。
- 首次在预训练阶段加入span-by-span 生成任务,让模型每次能够生成一个语义完整的片段。
- 提出填充式生成机制和噪声感知机制来缓解曝光偏差问题。
- 精巧的 Mulit-Flow Attention 实现框架。
- 2020.4.30 发布[ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), 一种新型图神经网络模型,采用ERNIE做为aggreagtor. 由[PGL](https://github.com/PaddlePaddle/PGL)实现。
- 2020.3.27 [在SemEval2020五项子任务上夺冠](https://www.jiqizhixin.com/articles/2020-03-27-8)
- 2019.12.26 [GLUE榜第一名](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- 2019.11.6 发布[ERNIE Tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- 2019.7.7 发布[ERNIE 2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- 2019.3.16 发布[ERNIE 1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)
# 导航
* [教程](#教程)
* [安装](#安装)
* [支持的NLP任务](#支持的nlp任务)
* [预训练(ERNIE 1.0)](#预训练-ernie-10)
* [在线预测](#在线预测)
* [蒸馏](#蒸馏)
# 快速上手
```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel
D.guard().__enter__() # activate paddle `dygrpah` mode
model = ErnieModel.from_pretrained('ernie-1.0') # Try to get pretrained model from server, make sure you have network connection
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0)) # insert extra `batch` dimension
pooled, encoded = model(ids) # eager execution
print(pooled.numpy()) # convert results to numpy
```
# 教程
手边没有GPU?欢迎在[AIStudio](https://aistudio.baidu.com/aistudio/index)中直接试用 ERNIE.
(请选择最新版本的教程并申请GPU运行环境)
1. [从0开始学ERNIE](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
1. [情感识别](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [完形填空](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [知识蒸馏](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [万事不决问ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
# 安装
##### 1. 安装 ERNIE
```script
pip install paddle-ernie==0.0.1.dev1
```
或者
```shell
git clone -b dygraph https://github.com/PaddlePaddle/ERNIE.git --single-branch
cd ERNIE
pip install -r requirement.txt
pip setup.py -e .
```
##### 3. 下载预训练模型(可选)
| Model | Description |
| :------------------------------------------------- | :----------------------------------------------------------- |
| [ERNIE 1.0 Base 中文](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz) | L12H768A12 |
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz) | L3H1024A16 |
| [ERNIE 2.0 Base 英文](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz) | base: L12H768A12 |
| [ERNIE 2.0 Large 英文](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | large: L24H1024A16|
| [ERNIE Gen base 英文](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz) | L12H768A12 |
| [ERNIE Gen Large 英文](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 |
##### 4. 下载数据集
**英文数据集**
运行[](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)脚本,下载[GLUE datasets](https://gluebenchmark.com/tasks).
请将数据目录整理成以下格式,方便在后续 demo 教程中使用(通过`--data_dir`参数将数据路径传入训练脚本);
```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
└── 1
```
[示例](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz)数据(MNLI任务测试、训练集合)。
**中文数据**
| 数据集|描述|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz) |XNLI 是由 Facebook 和纽约大学的研究者联合构建的自然语言推断数据集,包括 15 种语言的数据。我们用其中的中文数据来评估模型的语言理解能力。[链接](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp 是一个中文情感分析数据集,包含酒店、笔记本电脑和书籍的网购评论。|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz) |MSRA-NER (SIGHAN2006) 数据集由微软亚研院发布,其目标是识别文本中具有特定意义的实体,包括人名、地名、机构名。|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz) |NLPCC2016-DBQA 是由国际自然语言处理和中文计算会议 NLPCC 于 2016 年举办的评测任务,其目标是从候选中找到合适的文档作为问题的答案。[链接](http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf)|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 是中文信息学会举办的评测,评测的任务是抽取类阅读理解。[链接](https://github.com/ymcui/cmrc2018)
# 支持的NLP任务
- 使用 `动态图` 模型进行finetune:
```script
python3 ./demo/finetune_classifier_dygraph.py \
--from_pretrained ernie_1.0 \
--data_dir ./data/xnli
```
- 分布式 finetune
`paddle.distributed.launch` 是一个进程管理器,我们采用它在每一张GPU上启动一个python进程,并配置相应的环境变量以进行分布式训练:
当采用分布式训练时,我们采用`max_steps`做为终止条件而非`epoch`, 这样处理是为了避免进程间死锁。
另外值得注意的是训练集需要在不同的进程间进行切分;以避免所有进程训练同一份数据造成的过拟合。
示例脚本(请确保你有两张以上GPU卡):
```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
--data_dir data/mnli \
--max_steps 10000 \
--from_pretrained ernie2.0-en
```
更多示例脚本:
1. [情感分析](./demo/finetune_sentiment_analysis_dygraph.py)
1. [语义匹配](./demo/finetune_classifier_dygraph.py)
1. [命名实体识别(NER)](./demo/finetune_ner_dygraph.py)
1. [机器阅读理解](./demo/finetune_mrc_dygraph.py)
1. [文本摘要生成](./experimental/seq2seq/README.md)
**推荐超参数设置:**
|任务|batch size|learning rate|
|--|--|--|
| CoLA | 32 / 64 (base) | 3e-5 |
| SST-2
| 64 / 256 (base) | 2e-5 |
| STS-B | 128 | 5e-5 |
| QQP | 256 | 3e-5(base)/5e-5(large) |
| MNLI | 256 / 512 (base)| 3e-5 |
| QNLI | 256 | 2e-5 |
| RTE | 16 / 4 (base) | 2e-5(base)/3e-5(large) |
| MRPC | 16 / 32 (base) | 3e-5 |
| WNLI | 8 | 2e-5 |
| XNLI | 512 | 1e-4(base)/4e-5(large) |
| CMRC2018 | 64 | 3e-5 |
| DRCD | 64 | 5e-5(base)/3e-5(large) |
| MSRA-NER(SIGHAN2006) | 16 | 5e-5(base)/1e-5(large) |
| ChnSentiCorp | 24 | 5e-5(base)/1e-5(large) |
| LCQMC | 32 | 2e-5(base)/5e-6(large) |
| NLPCC2016-DBQA| 64 | 2e-5(base)/1e-5(large) |
# 预训练 (ERNIE 1.0)
请见[这里](./demo/pretrain/README.md)
# 在线预测
如果`finetune_classifier_dygraph.py`中指定了`--inference_model_dir`参数,funetune脚本会将你的模型序列化并产出可以直接部署线上预测的`inference_model`.
关于生产环境中使用线上预测代码的实现细节,请见[C++ inference API](./inference/README.md).
或者你可以使用`propeller`启动一个多GPU预测服务(需要GPU环境),只需执行:
```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model -p 8881
```
即可启动预测服务;随后在Python端采用如下命令访问该服务(仅限 python3):
```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer
client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```
你也可从[此处]((https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz).)下载一个预先制作好的ernie-1.0 base模型的 `inference_model`.
该模型没有经过finetune,一般可以用做上层模型结构的 feature-base finetune或者做为一个文本特征抽取器。
因为该模行由老版API 产出,在进行客户端请求时需要在输入tensor后面追加一个维度:
```python3
ids = np.expand_dims(ids, -1) # ids.shape==[BATCH, SEQLEN, 1]
```
# 蒸馏
知识蒸馏是进行ERNIE模型压缩、加速的有效方式;关于知识蒸馏的实现细节请参见[这里](./distill/README.md)
# 文献引用
### ERNIE 1.0
```
@article{sun2019ernie,
title={Ernie: Enhanced representation through knowledge integration},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
journal={arXiv preprint arXiv:1904.09223},
year={2019}
}
```
### ERNIE 2.0
```
@article{sun2019ernie20,
title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1907.12412},
year={2019}
}
```
### ERNIE-GEN
```
@article{xiao2020ernie-gen,
title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:2001.11314},
year={2020}
}
```
若希望复现 paper 中的所有实验,请切换至本repo的`repro`分支。
### 讨论组
- [ERNIE官方主页](https://www.paddlepaddle.org.cn/ernie)
- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ 群: 760439550 (ERNIE discussion group).
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.
README.zh.md
\ No newline at end of file
[English](./README.en.md)|简体中文
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone.png)
ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在情感分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答等16个公开数据集上全面显著超越世界领先技术,在国际权威的通用语言理解评估基准GLUE上,得分首次突破90分,获得全球第一。在今年3月落下帷幕的全球最大语义评测SemEval 2020上,ERNIE摘得5项世界冠军, 该技术也被全球顶级科技商业杂志《麻省理工科技评论》官方网站报道,相关创新成果也被国际顶级学术会议AAAI、IJCAI收录。ERNIE在工业界得到了大规模应用,如搜索引擎、新闻推荐、广告系统、语音交互、智能客服等。
**提醒: ERNIE老版本代码已经迁移至[repro分支](https://github.com/PaddlePaddle/ERNIE/tree/repro),欢迎使用我们全新升级的基于动静结合的新版ERNIE套件进行开发。另外,也欢迎上[EasyDL](https://ai.baidu.com/easydl/pro)体验更丰富的功能(如ERNIE 2.0、ERNIE 2.1、ERNIE领域模型等)。**
# 新闻
- 2020.5.20:
- 欢迎试用`动态图`实现的 ERNIE:
- 基于[PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8)使用 ERNIE 进行 Pretrain 和 Finetune.
- 动态执行, 所见即所得。
- 大规模分布式训练。
- 易于部署。
- 通过Aistudio 教程快速入门NLP。
- 向后兼容老版 checkpoint。
- `ERNIE-GEN` 模型正式开源! ([点击进入](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
- 最强文本生成预训练模型正式开源,相关工作已被 `IJCAI-2020` 收录。
- 首次把 ERNIE 预训练技术能力扩展至文本生成领域,在多个典型任务上取得最佳。
- 您现在即可下载论文报告的所有模型(包含 [`base/large/large-160G`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen/README.zh.md#预训练模型))。
- 首次在预训练阶段加入span-by-span 生成任务,让模型每次能够生成一个语义完整的片段。
- 提出填充式生成机制和噪声感知机制来缓解曝光偏差问题。
- 精巧的 Mulit-Flow Attention 实现框架。
- 2020.4.30 发布[ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), 一种新型图神经网络模型,采用ERNIE做为aggreagtor. 由[PGL](https://github.com/PaddlePaddle/PGL)实现。
- 2020.3.27 [在SemEval2020五项子任务上夺冠](https://www.jiqizhixin.com/articles/2020-03-27-8)
- 2019.12.26 [GLUE榜第一名](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- 2019.11.6 发布[ERNIE Tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- 2019.7.7 发布[ERNIE 2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- 2019.3.16 发布[ERNIE 1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)
# 导航
* [教程](#教程)
* [安装](#安装)
* [支持的NLP任务](#支持的nlp任务)
* [预训练(ERNIE 1.0)](#预训练-ernie-10)
* [在线预测](#在线预测)
* [蒸馏](#蒸馏)
# 快速上手
```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel
D.guard().__enter__() # activate paddle `dygrpah` mode
model = ErnieModel.from_pretrained('ernie-1.0') # Try to get pretrained model from server, make sure you have network connection
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0)) # insert extra `batch` dimension
pooled, encoded = model(ids) # eager execution
print(pooled.numpy()) # convert results to numpy
```
# 教程
手边没有GPU?欢迎在[AIStudio](https://aistudio.baidu.com/aistudio/index)中直接试用 ERNIE.
(请选择最新版本的教程并申请GPU运行环境)
1. [从0开始学ERNIE](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
1. [情感识别](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [完形填空](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [知识蒸馏](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [万事不决问ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
# 安装
##### 1. 安装 PaddlePaddle
本项目依赖PaddlePaddle 1.7.0+, 请参考[这里](https://www.paddlepaddle.org.cn/install/quick)安装 PaddlePaddle。
##### 2. 安装 ERNIE
```script
pip install paddle-ernie
```
或者
```shell
git clone -b dygraph https://github.com/PaddlePaddle/ERNIE.git --single-branch
cd ERNIE
pip install -r requirements.txt
pip setup.py -e .
```
##### 3. 下载预训练模型(可选)
| Model | Description |
| :------------------------------------------------- | :----------------------------------------------------------- |
| [ERNIE 1.0 Base 中文](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz) | L12H768A12 |
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz) | L3H1024A16 |
| [ERNIE 2.0 Base 英文](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz) | base: L12H768A12 |
| [ERNIE 2.0 Large 英文](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | large: L24H1024A16|
| [ERNIE Gen base 英文](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz) | L12H768A12 |
| [ERNIE Gen Large 英文](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 |
##### 4. 下载数据集
**英文数据集**
运行[](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)脚本,下载[GLUE datasets](https://gluebenchmark.com/tasks).
请将数据目录整理成以下格式,方便在后续 demo 教程中使用(通过`--data_dir`参数将数据路径传入训练脚本);
```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
└── 1
```
[示例](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz)数据(MNLI任务测试、训练集合)。
**中文数据**
| 数据集|描述|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz) |XNLI 是由 Facebook 和纽约大学的研究者联合构建的自然语言推断数据集,包括 15 种语言的数据。我们用其中的中文数据来评估模型的语言理解能力。[链接](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp 是一个中文情感分析数据集,包含酒店、笔记本电脑和书籍的网购评论。|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz) |MSRA-NER (SIGHAN2006) 数据集由微软亚研院发布,其目标是识别文本中具有特定意义的实体,包括人名、地名、机构名。|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz) |NLPCC2016-DBQA 是由国际自然语言处理和中文计算会议 NLPCC 于 2016 年举办的评测任务,其目标是从候选中找到合适的文档作为问题的答案。[链接](http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf)|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 是中文信息学会举办的评测,评测的任务是抽取类阅读理解。[链接](https://github.com/ymcui/cmrc2018)
# 支持的NLP任务
- 使用 `动态图` 模型进行finetune:
```script
python3 ./demo/finetune_classifier_dygraph.py \
--from_pretrained ernie_1.0 \
--data_dir ./data/xnli
```
- 分布式 finetune
`paddle.distributed.launch` 是一个进程管理器,我们采用它在每一张GPU上启动一个python进程,并配置相应的环境变量以进行分布式训练:
当采用分布式训练时,我们采用`max_steps`做为终止条件而非`epoch`, 这样处理是为了避免进程间死锁。
另外值得注意的是训练集需要在不同的进程间进行切分;以避免所有进程训练同一份数据造成的过拟合。
示例脚本(请确保你有两张以上GPU卡):
```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
--data_dir data/mnli \
--max_steps 10000 \
--from_pretrained ernie2.0-en
```
更多示例脚本:
1. [情感分析](./demo/finetune_sentiment_analysis_dygraph.py)
1. [语义匹配](./demo/finetune_classifier_dygraph.py)
1. [命名实体识别(NER)](./demo/finetune_ner_dygraph.py)
1. [机器阅读理解](./demo/finetune_mrc_dygraph.py)
1. [文本摘要生成](./experimental/seq2seq/README.md)
**推荐超参数设置:**
|任务|batch size|learning rate|
|--|--|--|
| CoLA | 32 / 64 (base) | 3e-5 |
| SST-2
| 64 / 256 (base) | 2e-5 |
| STS-B | 128 | 5e-5 |
| QQP | 256 | 3e-5(base)/5e-5(large) |
| MNLI | 256 / 512 (base)| 3e-5 |
| QNLI | 256 | 2e-5 |
| RTE | 16 / 4 (base) | 2e-5(base)/3e-5(large) |
| MRPC | 16 / 32 (base) | 3e-5 |
| WNLI | 8 | 2e-5 |
| XNLI | 512 | 1e-4(base)/4e-5(large) |
| CMRC2018 | 64 | 3e-5 |
| DRCD | 64 | 5e-5(base)/3e-5(large) |
| MSRA-NER(SIGHAN2006) | 16 | 5e-5(base)/1e-5(large) |
| ChnSentiCorp | 24 | 5e-5(base)/1e-5(large) |
| LCQMC | 32 | 2e-5(base)/5e-6(large) |
| NLPCC2016-DBQA| 64 | 2e-5(base)/1e-5(large) |
# 预训练 (ERNIE 1.0)
请见[这里](./demo/pretrain/README.md)
# 在线预测
如果`finetune_classifier_dygraph.py`中指定了`--inference_model_dir`参数,funetune脚本会将你的模型序列化并产出可以直接部署线上预测的`inference_model`.
关于生产环境中使用线上预测代码的实现细节,请见[C++ inference API](./inference/README.md).
或者你可以使用`propeller`启动一个多GPU预测服务(需要GPU环境),只需执行:
```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model -p 8881
```
即可启动预测服务;随后在Python端采用如下命令访问该服务(仅限 python3):
```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer
client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```
你也可从[此处]((https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz).)下载一个预先制作好的ernie-1.0 base模型的 `inference_model`.
该模型没有经过finetune,一般可以用做上层模型结构的 feature-base finetune或者做为一个文本特征抽取器。
因为该模行由老版API 产出,在进行客户端请求时需要在输入tensor后面追加一个维度:
```python3
ids = np.expand_dims(ids, -1) # ids.shape==[BATCH, SEQLEN, 1]
```
# 蒸馏
知识蒸馏是进行ERNIE模型压缩、加速的有效方式;关于知识蒸馏的实现细节请参见[这里](./distill/README.md)
# 文献引用
### ERNIE 1.0
```
@article{sun2019ernie,
title={Ernie: Enhanced representation through knowledge integration},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
journal={arXiv preprint arXiv:1904.09223},
year={2019}
}
```
### ERNIE 2.0
```
@article{sun2019ernie20,
title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1907.12412},
year={2019}
}
```
### ERNIE-GEN
```
@article{xiao2020ernie-gen,
title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:2001.11314},
year={2020}
}
```
若希望复现 paper 中的所有实验,请切换至本repo的`repro`分支。
### 讨论组
- [ERNIE官方主页](https://www.paddlepaddle.org.cn/ernie)
- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ 群: 760439550 (ERNIE discussion group).
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.
...@@ -17,6 +17,11 @@ from __future__ import absolute_import ...@@ -17,6 +17,11 @@ from __future__ import absolute_import
from __future__ import print_function from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
import paddle
paddle_version = [int(i) for i in paddle.__version__.split('.')]
if paddle_version[1] < 7:
raise RuntimeError('paddle-ernie requires paddle 1.7+, got %s' %
paddle.__version__)
from ernie.modeling_ernie import ErnieModel from ernie.modeling_ernie import ErnieModel
from ernie.modeling_ernie import (ErnieModelForSequenceClassification, from ernie.modeling_ernie import (ErnieModelForSequenceClassification,
......
...@@ -194,7 +194,7 @@ def beam_search_step(state, logits, eos_id, beam_width, is_first_step): ...@@ -194,7 +194,7 @@ def beam_search_step(state, logits, eos_id, beam_width, is_first_step):
@D.no_grad @D.no_grad
def beam_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_encode_len=640, max_decode_len=100, beam_width=5,): def beam_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_encode_len=640, max_decode_len=100, beam_width=5, tgt_type_id=3):
model.eval() model.eval()
#log.debug(q_ids.numpy().tolist()) #log.debug(q_ids.numpy().tolist())
_, __, info = model(q_ids, q_sids) _, __, info = model(q_ids, q_sids)
...@@ -228,7 +228,7 @@ def beam_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_enc ...@@ -228,7 +228,7 @@ def beam_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_enc
bias = gen_bias(q_ids, ids, step) bias = gen_bias(q_ids, ids, step)
pos_ids = D.to_variable(np.tile(np.array([[step, step + 1]], dtype=np.int64), [d_batch * beam_width, 1])) pos_ids = D.to_variable(np.tile(np.array([[step, step + 1]], dtype=np.int64), [d_batch * beam_width, 1]))
pos_ids += seqlen pos_ids += seqlen
_, logits, info = model(ids, L.ones_like(ids) * 3, pos_ids=pos_ids, attn_bias=bias, past_cache=past_cache) _, logits, info = model(ids, L.ones_like(ids) * tgt_type_id, pos_ids=pos_ids, attn_bias=bias, past_cache=past_cache)
past_cached_k, past_cached_v = past_cache past_cached_k, past_cached_v = past_cache
cached_k, cached_v = info['caches'] cached_k, cached_v = info['caches']
...@@ -307,7 +307,8 @@ if __name__ == '__main__': ...@@ -307,7 +307,8 @@ if __name__ == '__main__':
attn_id=tokenizer.vocab['[ATTN]'], attn_id=tokenizer.vocab['[ATTN]'],
max_decode_len=args.max_decode_len, max_decode_len=args.max_decode_len,
max_encode_len=args.max_encode_len, max_encode_len=args.max_encode_len,
beam_width=args.beam_width) beam_width=args.beam_width,
tgt_type_id=args.tgt_type_id)
output_str = rev_lookup(result_ids.numpy()) output_str = rev_lookup(result_ids.numpy())
for ostr in output_str.tolist(): for ostr in output_str.tolist():
......
...@@ -64,10 +64,11 @@ def evaluate(model, datasets, step, args): ...@@ -64,10 +64,11 @@ def evaluate(model, datasets, step, args):
output_ids = beam_search_infilling(model, src_ids, src_sids, output_ids = beam_search_infilling(model, src_ids, src_sids,
eos_id=tokenizer.sep_id, eos_id=tokenizer.sep_id,
sos_id=tokenizer.cls_id, sos_id=tokenizer.cls_id,
attn_id=tokenizer.vocab['[ATTN]'], attn_id=tokenizer.vocab[args.attn_token],
max_decode_len=args.max_decode_len, max_decode_len=args.max_decode_len,
max_encode_len=args.max_encode_len, max_encode_len=args.max_encode_len,
beam_width=args.beam_width) beam_width=args.beam_width,
tgt_type_id=args.tgt_type_id,)
output_str = rev_lookup(output_ids.numpy()) output_str = rev_lookup(output_ids.numpy())
for eid, ostr in zip(example_id.numpy().tolist(), output_str.tolist()): for eid, ostr in zip(example_id.numpy().tolist(), output_str.tolist()):
if '[SEP]' in ostr: if '[SEP]' in ostr:
...@@ -80,7 +81,7 @@ def evaluate(model, datasets, step, args): ...@@ -80,7 +81,7 @@ def evaluate(model, datasets, step, args):
def seq2seq(model, tokenizer, args): def seq2seq(model, tokenizer, args):
log.info('Training starts with args: %r' % args) log.info('Training starts with args: %r' % args)
attn_id = tokenizer.vocab['[ATTN]'] attn_id = tokenizer.vocab[args.attn_token]
def gen_mask(batch_ids, mask_type='bidi', query_len=None, pad_value=0): def gen_mask(batch_ids, mask_type='bidi', query_len=None, pad_value=0):
if query_len is None: if query_len is None:
query_len = batch_ids.shape[1] query_len = batch_ids.shape[1]
...@@ -224,11 +225,12 @@ def seq2seq(model, tokenizer, args): ...@@ -224,11 +225,12 @@ def seq2seq(model, tokenizer, args):
dev_ds.data_shapes = shapes dev_ds.data_shapes = shapes
dev_ds.data_types = types dev_ds.data_types = types
vocab_size, _ = model.word_emb.weight.shape
ctx = D.parallel.prepare_context() ctx = D.parallel.prepare_context()
model = D.parallel.DataParallel(model, ctx) model = D.parallel.DataParallel(model, ctx)
opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd) opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0)
attn_id = tokenizer.vocab['[ATTN]'] attn_id = tokenizer.vocab[args.attn_token]
for step, data in enumerate(train_ds.start(place)): for step, data in enumerate(train_ds.start(place)):
(example_id, src_ids, src_sids, src_pids, (example_id, src_ids, src_sids, src_pids,
tgt_ids, tgt_sids, tgt_pids, tgt_ids, tgt_sids, tgt_pids,
...@@ -242,7 +244,7 @@ def seq2seq(model, tokenizer, args): ...@@ -242,7 +244,7 @@ def seq2seq(model, tokenizer, args):
past_cache_k = [L.concat([k, k2], 1) for k, k2 in zip(cached_k, cached_k2)] past_cache_k = [L.concat([k, k2], 1) for k, k2 in zip(cached_k, cached_k2)]
past_cache_v = [L.concat([v, v2], 1) for v, v2 in zip(cached_v, cached_v2)] past_cache_v = [L.concat([v, v2], 1) for v, v2 in zip(cached_v, cached_v2)]
if args.label_smooth > 0.: if args.label_smooth > 0.:
tgt_labels = L.label_smooth(F.one_hot(tgt_labels, len(tokenizer.vocab)), epsilon=args.label_smooth) tgt_labels = L.label_smooth(F.one_hot(tgt_labels, vocab_size), epsilon=args.label_smooth)
loss, _, __ = model(attn_ids, sent_ids=tgt_sids, pos_ids=tgt_pids, attn_bias=mask_attn_2_srctgtattn, loss, _, __ = model(attn_ids, sent_ids=tgt_sids, pos_ids=tgt_pids, attn_bias=mask_attn_2_srctgtattn,
past_cache=(past_cache_k, past_cache_v), past_cache=(past_cache_k, past_cache_v),
tgt_labels=tgt_labels, tgt_labels=tgt_labels,
...@@ -283,12 +285,13 @@ if __name__ == '__main__': ...@@ -283,12 +285,13 @@ if __name__ == '__main__':
parser.add_argument('--max_decode_len', type=int, default=120) parser.add_argument('--max_decode_len', type=int, default=120)
parser.add_argument('--tgt_type_id', type=int, default=3) parser.add_argument('--tgt_type_id', type=int, default=3)
parser.add_argument('--warmup_proportion', type=float, default=0.1) parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--beam_width', type=int, default=3) parser.add_argument('--beam_width', type=int, default=5)
parser.add_argument('--noise_prob', type=float, default=0.7, help='probability of token be repalced') parser.add_argument('--noise_prob', type=float, default=0.7, help='probability of token be repalced')
parser.add_argument('--use_random_noice', action='store_true', help='if set, replace target tokens with random token from vocabulary, else replace with `[NOISE]`') parser.add_argument('--use_random_noice', action='store_true', help='if set, replace target tokens with random token from vocabulary, else replace with `[NOISE]`')
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate') parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--label_smooth', type=float, default=0.1) parser.add_argument('--label_smooth', type=float, default=0.1)
parser.add_argument('--predict_output_dir', type=str, default=None, help='predict file output directory') parser.add_argument('--predict_output_dir', type=str, default=None, help='predict file output directory')
parser.add_argument('--attn_token', type=str, default='[ATTN]', help='if [ATTN] not in vocab, you can specified [MAKK] as attn-token')
parser.add_argument('--inference_model_dir', type=str, default=None, help='inference model output directory') parser.add_argument('--inference_model_dir', type=str, default=None, help='inference model output directory')
parser.add_argument('--save_dir', type=str, default=None, help='model output directory') parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer') parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
......
...@@ -32,6 +32,7 @@ class ErnieModelForGeneration(ErnieModel): ...@@ -32,6 +32,7 @@ class ErnieModelForGeneration(ErnieModel):
resource_map = { resource_map = {
'ernie-gen-base-en': ErnieModel.bce + 'model-ernie-gen-base-en.1.tar.gz', 'ernie-gen-base-en': ErnieModel.bce + 'model-ernie-gen-base-en.1.tar.gz',
'ernie-gen-large-en': ErnieModel.bce + 'model-ernie-gen-large-en.1.tar.gz', 'ernie-gen-large-en': ErnieModel.bce + 'model-ernie-gen-large-en.1.tar.gz',
'ernie-1.0': ErnieModel.bce + 'model-ernie1.0.1.tar.gz',
} }
def __init__(self, cfg, name=None): def __init__(self, cfg, name=None):
cfg['return_additional_info'] = True cfg['return_additional_info'] = True
......
nltk==3.4 numpy
numpy==1.14.5
pyzmq==18.0.2 pyzmq==18.0.2
scikit-learn==0.20.3
scipy==1.2.1
six==1.11.0 six==1.11.0
sklearn==0.0 sklearn==0.0
sentencepiece==0.1.8 sentencepiece==0.1.8
paddlepaddle-gpu==1.7.1.post107
...@@ -22,16 +22,15 @@ with open("README.md", "r", encoding='utf-8') as fh: ...@@ -22,16 +22,15 @@ with open("README.md", "r", encoding='utf-8') as fh:
setuptools.setup( setuptools.setup(
name="paddle-ernie", # Replace with your own username name="paddle-ernie", # Replace with your own username
version="0.0.1dev1", version="0.0.2dev1",
author="Baidu Ernie Team", author="Baidu Ernie Team",
author_email="ernieernie.team@gmail.com", author_email="ernieernie.team@gmail.com",
description="A pretrained NLP model for every NLP tasks", description="A pretrained NLP model for every NLP tasks",
long_description=long_description, long_description=long_description,
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
url="https://github.com/PaddlePaddle/ERNIE/tree/dygraph", url="https://github.com/PaddlePaddle/ERNIE/",
packages=['ernie'], packages=['ernie'],
install_requires=[ install_requires=[
'paddlepaddle-gpu>=1.7.1',
'requests', 'requests',
'tqdm', 'tqdm',
], ],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册