未验证 提交 defa38e7 编写于 作者: M Meiyim 提交者: GitHub

Dygraph (#436)

* fix pretrain reader  encoding

* dygraph

* update bce

* fix readme

* update readme

* fix readme

* remove debug log

* remove chn example

* fix pretrain

* tokenizer can escape special token
rename mlm_bias

* update readme

* 1. MRC tasks
2. optimize truncate strategy in tokenzier
3. rename `ernie.cls_fc` to `ernie.classifyer`
4. reorg pretrain dir

* + doc string

* update readme

* Update README.md

* Update README.md

* Update README.md

* update pretrain

* Update README.md

* show gif

* update readme

* fix gif; disable save_dygrpah

* bugfix

* + save inf model
+ inference
+ distill
+ readme

* Update README.md

* + propeller server

* Update README.md

* Update README.md

* Update README.md

* + sementic analysis(another text classification)

* transformer + cache
fix tokenization bug

* update reamde; fix tokenization

* Update README.md

* Update README.md

* Add files via upload

* Update README.md

* Update README.md

* Update README.md

* infer senti analysis

* + readme header

* transformer cache has gradients

* + seq2seq

* +experimental

* reorg

* update readme

* Update README.md

* seq2seq

* + cnndm evluation scripts

* update README.md

* +zh readme

* + publish ernie gen model

* update README.md

* Update README.zh.md

* Update README.md

* Update README.zh.md

* Update README.md

* Update README.zh.md

* Update README.md

* Update README.zh.md

* Update README.md

* Update README.zh.md

* Update README.zh.md

* Add files via upload

* Update README.md

* Update README.zh.md

* Add files via upload

* release ernie-gen (#444)

* release ernie-gen

* add .meta

* del tag

* fix tag

* Add files via upload

* Update README.zh.md

* Update README.md

* Update and rename README.zh.md to README.eng.md

* Update README.eng.md

* Update README.md

* Update README.eng.md

* Update README.md

* Update README.eng.md

* Update README.md

* Update README.md

* Update README.md

* Update README.eng.md

* Update README.eng.md

* Update README.eng.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
Co-authored-by: Nkirayummy <shi.k.feng@gmail.com>
Co-authored-by: Nzhanghan <zhanghan17@baidu.com>
上级 2a4965cf
*.pyc
*.un~
*~
*.pyc
*.swp
*.egg-info/
*.swn
*.swo
dist/
paddle_ernie.egg-info/
- repo: https://github.com/PaddlePaddle/mirrors-yapf.git
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks:
- id: yapf
files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464
hooks:
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
files: (?!.*paddle)^.*$
- id: end-of-file-fixer
files: \.md$
- id: trailing-whitespace
files: \.md$
- repo: https://github.com/Lucas-C/pre-commit-hooks
sha: v1.0.1
hooks:
- id: forbid-crlf
files: \.md$
- id: remove-crlf
files: \.md$
- id: forbid-tabs
files: \.md$
- id: remove-tabs
files: \.md$
set -eux
export FLAGS_sync_nccl_allreduce=1
MODEL_PATH=ERNIE_1.0.1
TASK_DATA_PATH=task_data
train() {
python -u run_classifier.py \
--use_cuda true \
--do_train true \
--do_val true \
--do_test true \
--verbose true \
--batch_size 8192 \
--in_tokens true \
--init_pretraining_params ${MODEL_PATH}/params \
--train_set ${TASK_DATA_PATH}/xnli/train.tsv \
--dev_set ${TASK_DATA_PATH}/xnli/dev.tsv \
--test_set ${TASK_DATA_PATH}/xnli/test.tsv \
--test_save ./test_save_xnli \
--vocab_path config/vocab.txt \
--label_map ${TASK_DATA_PATH}/xnli/label_map.json \
--ernie_config_path config/ernie_config.json \
--checkpoints ./checkpoints \
--save_steps 2000 \
--weight_decay 0.01 \
--warmup_proportion 0.0 \
--validation_steps 25 \
--epoch 1 \
--max_seq_len 512 \
--learning_rate 1e-4 \
--skip_steps 10 \
--num_iteration_per_drop_scope 1 \
--num_labels 3 \
--random_seed 100 \
--enable_ce \
--shuffle false
}
export CUDA_VISIBLE_DEVICES=0
train | python _ce.py
export CUDA_VISIBLE_DEVICES=0,1,2,3
train | python _ce.py
[style]
based_on_style = pep8
column_limit = 80
language: python
compiler: gcc
cache: ccache
addons:
apt:
packages:
- git
# ssh_known_hosts: 13.229.163.131
env:
- JOB=PRE_COMMIT
matrix:
include:
- python: 2.7
- python: 3.7
dist: xenial # required for Python >= 3.7 (travis-ci/travis-ci#9069)
before_install:
- pip install --upgrade pip
- pip install pre-commit
script:
- exit_code=0
- .travis/precommit.sh || exit_code=$(( exit_code | $? ))
notifications:
email:
on_success: change
on_failure: always
#!/bin/bash
function abort(){
echo "Your commit does not fit PaddlePaddle code style" 1>&2
echo "Please use pre-commit scripts to auto-format your code" 1>&2
exit 1
}
trap 'abort' 0
set -e
cd `dirname $0`
cd ..
export PATH=/usr/bin:$PATH
pre-commit install
if ! pre-commit run -a ; then
ls -lh
git diff --exit-code
exit 1
fi
trap : 0
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
English|[简体中文](./README.md)
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone.png)
**Remind: This repo has been refactored, for paper re-production or backward compatibility; plase checkout to [repro branch](https://github.com/PaddlePaddle/ERNIE/tree/repro)**
ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.
ERNIE 2.0 builds a strong basic for nearly every NLP tasks: Text Classification, Ranking, NER, machine reading comprehension, text genration and so on.
# News
- May.20.2020: Try ERNIE in "`dygraph`", with:
- Pretrain and finetune ERNIE with [PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8).
- Eager execution with `paddle.fluid.dygraph`.
- Distributed training.
- Easy deployment.
- Learn NLP in Aistudio tutorials.
- Backward compatibility for old-styled checkpoint
- Release **[ERNIE-GEN](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen)**, a state-of-the-art pre-trained model for generation tasks: base/large/large-160G
- Apr.30.2020: Release [ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), a novel Graph Neural Network Model using ERNIE as its aggregator. It is implemented through [PGL](https://github.com/PaddlePaddle/PGL)
- Mar.27.2020: [Champion on 5 SemEval2020 sub tasks](https://www.jiqizhixin.com/articles/2020-03-27-8)
- Dec.26.2019: [1st place on GLUE leaderboard](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- Nov.6.2019: [Introducing ERNIE-tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- Jul.7.2019: [Introducing ERNIE2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- Mar.16.2019: [Introducing ERNIE1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)
# Table of contents
* [Tutorials](#tutorials)
* [Setup](#setup)
* [Fine-tuning](#fine-tuning)
* [Pre-training with ERNIE 1.0](#pre-training-with-ernie-10)
* [Online inference](#online-inference)
* [Distillation](#distillation)
# Quick Tour
```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel
D.guard().__enter__() # activate paddle `dygrpah` mode
model = ErnieModel.from_pretrained('ernie-1.0') # Try to get pretrained model from server, make sure you have network connection
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0)) # insert extra `batch` dimension
pooled, encoded = model(ids) # eager execution
print(pooled.numpy()) # convert results to numpy
```
# Tutorials
Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/index)!
(please choose the latest version and apply for a GPU environment)
1. [ERNIE for beginners](https://aistudio.baidu.com/aistudio/projectdetail/266623)
1. [Sementic Analysis](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [Cloze Test](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [Knowledge Distillation](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [Ask Ernie](https://aistudio.baidu.com/aistudio/projectdetail/456443)
# Setup
##### 1. install ernie
```script
pip install paddle-ernie==0.0.1.dev1
```
or
```shell
git clone -b dygraph https://github.com/PaddlePaddle/ERNIE.git --single-branch
cd ERNIE
pip install -r requirement.txt
pip setup.py -e .
```
##### 3. download pretrained models (optional)
| Model | Description |
| :------------------------------------------------- | :----------------------------------------------------------- |
| [ERNIE 1.0 Base for Chinese](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz) | L12H768A12 |
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz) | L3H1024A16 |
| [ERNIE 2.0 Base for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz) | L12H768A12 |
| [ERNIE 2.0 Large for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | L24H1024A16 |
| [ERNIE Gen base for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz) | L12H768A12 |
| [ERNIE Gen Large for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 |
##### 4. download datasets
**English Datasets**
Download the [GLUE datasets](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
the `--data_dir` option in the following section assumes a directory tree like this:
```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
└── 1
```
see [demo](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz) data for MNLI task.
**Chinese Datasets**
| Datasets|Description|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz) |XNLI is a natural language inference dataset in 15 languages. It was jointly built by Facebook and New York University. We use Chinese data of XNLI to evaluate language understanding ability of our model. [url](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp is a sentiment analysis dataset consisting of reviews on online shopping of hotels, notebooks and books.|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz) |MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text.|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz) |NLPCC2016-DBQA is a sub-task of NLPCC-ICCPOL 2016 Shared Task which is hosted by NLPCC(Natural Language Processing and Chinese Computing), this task targets on selecting documents from the candidates to answer the questions. [url: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf]|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 is a evaluation of Chinese extractive reading comprehension hosted by Chinese Information Processing Society of China (CIPS-CL). [url](https://github.com/ymcui/cmrc2018)|
# Fine-tuning
- try eager execution with `dygraph model` :
```script
python3 ./demo/finetune_classifier_dygraph.py \
--from_pretrained ernie_1.0 \
--data_dir ./data/xnli
```
- Distributed finetune
`paddle.distributed.launch` is a process manager, we use it to launch python processes on each avalible GPU devices:
when in distributed training, `max_steps` is used as stopping criteria rather than `epoch` to prevent dead block.
also notice than we shard the train data according to device id to prevent over fitting.
demo:
```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
--data_dir data/mnli \
--max_steps 10000 \
--from_pretrained ernie2.0-en
```
many other demo python scripts:
1. [Sentiment Analysis](./demo/finetune_sentiment_analysis_dygraph.py)
1. [Semantic Similarity](./demo/finetune_classifier_dygraph.py)
1. [Name Entity Recognition(NER)](./demo/finetune_ner_dygraph.py)
1. [Machine Reading Comprehension](./demo/finetune_mrc_dygraph.py)
1. [Text generation](./experimental/seq2seq/README.md)
**recomended hyper parameters:**
|tasks|batch size|learning rate|
|--|--|--|
| CoLA | 32 / 64 (base) | 3e-5 |
| SST-2 | 64 / 256 (base) | 2e-5 |
| STS-B | 128 | 5e-5 |
| QQP | 256 | 3e-5(base)/5e-5(large) |
| MNLI | 256 / 512 (base)| 3e-5 |
| QNLI | 256 | 2e-5 |
| RTE | 16 / 4 (base) | 2e-5(base)/3e-5(large) |
| MRPC | 16 / 32 (base) | 3e-5 |
| WNLI | 8 | 2e-5 |
| XNLI | 512 | 1e-4(base)/4e-5(large) |
| CMRC2018 | 64 | 3e-5 |
| DRCD | 64 | 5e-5(base)/3e-5(large) |
| MSRA-NER(SIGHAN2006) | 16 | 5e-5(base)/1e-5(large) |
| ChnSentiCorp | 24 | 5e-5(base)/1e-5(large) |
| LCQMC | 32 | 2e-5(base)/5e-6(large) |
| NLPCC2016-DBQA| 64 | 2e-5(base)/1e-5(large) |
# Pretraining with ERNIE 1.0
see [here](./demo/pretrain/README.md)
# Online inference
If `--inference_model_dir` is passed to `finetune_classifier_dygraph.py`,
a deployable model will be generated at the end of finetuning and your model is ready to serve.
For details about online inferece, see [C++ inference API](./inference/README.md),
or you can start a multi-gpu inference server with a few lines of codes:
```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model -p 8881
```
and call the server just like calling local function (python3 only):
```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer
client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```
A pre-made `inference model` for ernie-1.0 can be downloaded at [here](https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz).
It can be used for feature-based finetuning or feature extraction.
# Distillation
Knowledge distillation is good way to compress and accelerate ERNIE.
For details about distillation, see [here](./distill/README.md)
### Citation
please cite [ERNIE 2.0](https://arxiv.org/abs/1907.12412):
```
@article{SunERNIE,
title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
}
```
and [ERNIE Gen](https://arxiv.org/abs/2001.11314)
```
@article{Xiao2020ERNIE,
title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
year={2020},
}
```
For full reproduction of paper results, please checkout to `repro` branch of this repo.
### Communication
- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 760439550 (ERNIE discussion group).
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.
此差异已折叠。
此差异已折叠。
{
"attention_probs_dropout_prob": 0.1,
"hidden_act": "relu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"max_position_embeddings": 513,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 18000
}
此差异已折叠。
此差异已折叠。
./data/demo_train_set.gz 1.1
./data/demo_valid_set.gz 1.1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import os
import re
import time
import logging
from random import random
import json
from functools import reduce, partial
import numpy as np
import multiprocessing
import tempfile
import jieba
import re
import paddle
import paddle.fluid as F
import paddle.fluid.layers as L
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import optimization
#import utils.data
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
def model_fn(features, mode, params, run_config):
ernie = ErnieModelForSequenceClassification(params, name='')
if not params is propeller.RunMode.TRAIN:
ernie.eval()
metrics, loss = None, None
if mode is propeller.RunMode.PREDICT:
src_ids, sent_ids = features
_, logits = ernie(src_ids, sent_ids)
predictions = [logits,]
else:
src_ids, sent_ids, labels = features
if mode is propeller.RunMode.EVAL:
loss, logits = ernie(src_ids, sent_ids, labels=labels)
pred = L.argmax(logits, axis=1)
acc = propeller.metrics.Acc(labels, pred)
metrics = {'acc': acc}
predictions = [pred]
else:
loss, logits = ernie(src_ids, sent_ids, labels=labels)
scheduled_lr, _ = optimization(
loss=loss,
warmup_steps=int(run_config.max_steps * params['warmup_proportion']),
num_train_steps=run_config.max_steps,
learning_rate=params['learning_rate'],
train_program=F.default_main_program(),
startup_prog=F.default_startup_program(),
use_fp16=params.use_fp16,
weight_decay=params['weight_decay'],
scheduler="linear_warmup_decay",
)
propeller.summary.scalar('lr', scheduled_lr)
predictions = [logits,]
return propeller.ModelSpec(loss=loss, mode=mode, metrics=metrics, predictions=predictions)
if __name__ == '__main__':
parser = propeller.ArgumentParser('DAN model with Paddle')
parser.add_argument('--do_predict', action='store_true')
parser.add_argument('--max_seqlen', type=int, default=128)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--from_pretrained', type=str, required=True)
parser.add_argument('--warm_start_from', type=str)
parser.add_argument('--epoch', type=int, default=3)
parser.add_argument('--use_fp16', action='store_true')
args = parser.parse_args()
if not os.path.exists(args.from_pretrained):
raise ValueError('--from_pretrained not found: %s' % args.from_pretrained)
cfg_file_path = os.path.join(args.from_pretrained, 'ernie_config.json')
param_path = os.path.join(args.from_pretrained, 'params')
vocab_path = os.path.join(args.from_pretrained, 'vocab.txt')
assert os.path.exists(cfg_file_path) and os.path.exists(param_path) and os.path.exists(vocab_path)
hparams_cli = propeller.parse_hparam(args)
hparams_config_file = json.loads(open(cfg_file_path).read())
default_hparams = propeller.HParams(
batch_size=32,
num_labels=3,
warmup_proportion=0.1,
learning_rate=5e-5,
weight_decay=0.01,
use_task_id=False,
use_fp16=args.use_fp16,
)
hparams = default_hparams.join(propeller.HParams(**hparams_config_file)).join(hparams_cli)
default_run_config=dict(
max_steps=args.epoch * 390000 / hparams.batch_size,
save_steps=1000,
log_steps=10,
max_ckpt=1,
skip_steps=0,
model_dir=tempfile.mkdtemp(),
eval_steps=100)
run_config = dict(default_run_config, **json.loads(args.run_config))
run_config = propeller.RunConfig(**run_config)
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
unk_id = tokenizer.vocab['[UNK]']
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
types = ('int64', 'int64', 'int64')
if not args.do_predict:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('title', unk_id=unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.TextColumn('comment', unk_id=unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn('label', vocab_dict={
b"contradictory": 0,
b"contradiction": 0,
b"entailment": 1,
b"neutral": 2,
}),
])
def map_fn(seg_a, seg_b, label):
seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
#label = np.expand_dims(label, -1) #
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=True, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size)
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size)
test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size) \
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
test_ds.data_shapes = shapes
test_ds.data_types = types
varname_to_warmstart = re.compile(r'^encoder.*[wb]_0$|^.*embedding$|^.*bias$|^.*scale$|^pooled_fc.[wb]_0$')
ws = propeller.WarmStartSetting(
predicate_fn=lambda v: varname_to_warmstart.match(v.name) and os.path.exists(os.path.join(param_path, v.name)),
from_dir=param_path,
)
best_exporter = propeller.train.exporter.BestExporter(os.path.join(run_config.model_dir, 'best'), cmp_fn=lambda old, new: new['dev']['acc'] > old['dev']['acc'])
propeller.train.train_and_eval(
model_class_or_model_fn=model_fn,
params=hparams,
run_config=run_config,
train_dataset=train_ds,
eval_dataset={'dev': dev_ds, 'test': test_ds},
warm_start_setting=ws,
exporters=[best_exporter])
print('dev_acc3\t%.5f\ntest_acc3\t%.5f' % (best_exporter._best['dev']['acc'], best_exporter._best['test']['acc']))
else:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('title', unk_id=unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.TextColumn('comment', unk_id=unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
])
def map_fn(seg_a, seg_b):
seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
return sentence, segments
predict_ds = feature_column.build_dataset_from_stdin('predict') \
.map(map_fn) \
.padded_batch(hparams.batch_size) \
predict_ds.data_shapes = shapes[: -1]
predict_ds.data_types = types[: -1]
est = propeller.Learner(model_fn, run_config, hparams)
for res, in est.predict(predict_ds, ckpt=-1):
print('%d\t%.5f\t%.5f\t%.5f' % (np.argmax(res), res[0], res[1], res[2]))
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
import numpy as np
import logging
import argparse
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay
if __name__ == '__main__':
parser = argparse.ArgumentParser('classify model with ERNIE')
parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=32, help='batchsize')
parser.add_argument('--epoch', type=int, default=3, help='epoch')
parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--inference_model_dir', type=str, default=None, help='inference model output directory')
parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.TextColumn('seg_b', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn('label', vocab_dict={
b"contradictory": 0,
b"contradiction": 0,
b"entailment": 1,
b"neutral": 2,
}),
])
def map_fn(seg_a, seg_b, label):
seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz, (0, 0, 0))
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz, (0, 0, 0))
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
types = ('int64', 'int64', 'int64')
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
place = F.CUDAPlace(0)
with FD.guard(place):
model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')
opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
for epoch in range(args.epoch):
for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
ids, sids, label = d
loss, _ = model(ids, sids, labels=label)
loss.backward()
if step % 10 == 0:
log.debug('train loss %.5f lr %.3e' % (loss.numpy(), opt.current_step_lr()))
opt.minimize(loss, grad_clip=g_clip)
model.clear_gradients()
if step % 100 == 0:
acc = []
with FD.base._switch_tracer_mode_guard_(is_train=False):
model.eval()
for step, d in enumerate(tqdm(dev_ds.start(), desc='evaluating %d' % epoch)):
ids, sids, label = d
loss, logits = model(ids, sids, labels=label)
#print('\n'.join(map(str, logits.numpy().tolist())))
a = L.argmax(logits, -1) == label
acc.append(a.numpy())
model.train()
log.debug('acc %.5f' % np.concatenate(acc).mean())
if args.save_dir is not None:
F.save_dygraph(model.state_dict(), args.save_dir)
if args.inference_model_dir is not None:
log.debug('saving inference model')
class InferemceModel(ErnieModelForSequenceClassification):
def forward(self, *args, **kwargs):
_, logits = super(InferemceModel, self).forward(*args, **kwargs)
return logits
model.__class__ = InferemceModel #dynamic change model type, to make sure forward output doesn't contain `None`
src_placeholder = FD.to_variable(np.ones([1, 1], dtype=np.int64))
sent_placehodler = FD.to_variable(np.zeros([1, 1], dtype=np.int64))
model(src_placeholder, sent_placehodler)
_, static_model = FD.TracedLayer.trace(model, inputs=[src_placeholder, sent_placehodler])
static_model.save_inference_model(args.inference_model_dir)
log.debug('done')
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
import numpy as np
import logging
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay
if __name__ == '__main__':
parser = propeller.ArgumentParser('classify model with ERNIE')
parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=32, help='batchsize')
parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
parser.add_argument('--wd', type=int, default=0.01, help='weight decay, aka L2 regularizer')
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.TextColumn('seg_b', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn('label', vocab_dict={
b"0": 0,
b"1": 1,
b"2": 2,
}),
])
def map_fn(seg_a, seg_b, label):
seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=False, repeat=True, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz, (0, 0, 0))
train_ds = train_ds.shard(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id)
log.debug('shard %d/%d'%(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id))
train_ds = train_ds.shuffle(10000)
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz, (0, 0, 0))
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
types = ('int64', 'int64', 'int64')
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
place = F.CUDAPlace(FD.parallel.Env().dev_id)
with FD.guard(place):
ctx = FD.parallel.prepare_context()
model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')
model = FD.parallel.DataParallel(model, ctx)
opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
ids, sids, label = d
loss, _ = model(ids, sids, labels=label)
scaled_loss = model.scale_loss(loss)
scaled_loss.backward()
model.apply_collective_grads()
opt.minimize(scaled_loss, grad_clip=g_clip)
model.clear_gradients()
if step % 10 == 0:
log.debug('train loss %.5f, lr %.e3' % (loss.numpy(), opt.current_step_lr()))
if step % 100 == 0 and FD.parallel.Env().dev_id == 0:
acc = []
with FD.base._switch_tracer_mode_guard_(is_train=False):
model.eval()
for step, d in enumerate(tqdm(dev_ds.start(place), desc='evaluating')):
ids, sids, label = d
loss, logits = model(ids, sids, labels=label)
#print('\n'.join(map(str, logits.numpy().tolist())))
a = L.argmax(logits, -1) == label
acc.append(a.numpy())
model.train()
log.debug('acc %.5f' % np.concatenate(acc).mean())
if step > args.max_steps:
break
if args.save_dir is not None:
F.save_dygraph(model.state_dict(), args.save_dir)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
import pickle
import argparse
import numpy as np
import logging
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as D
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
from ernie.modeling_ernie import ErnieModel, ErnieModelForQuestionAnswering
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay
from ernie.mrc import mrc_reader
from ernie.mrc import mrc_metrics
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
def evaluate(model, ds, all_examples, all_features, tokenizer, args):
dev_file = json.loads(open(args.dev_file).read())
with D.base._switch_tracer_mode_guard_(is_train=False):
log.debug('start eval')
model.eval()
all_res = []
for step, (uids, token_ids, token_type_ids, _, __) in enumerate(ds.start(place)):
_ , start_logits, end_logits = model(token_ids, token_type_ids)
res = [mrc_metrics.RawResult(unique_id=u, start_logits=s, end_logits=e)
for u, s, e in zip(uids.numpy(), start_logits.numpy(), end_logits.numpy())]
all_res += res
open('all_res', 'wb').write(pickle.dumps(all_res))
all_pred, all_nbests = mrc_metrics.make_results(
tokenizer,
all_examples,
all_features,
all_res,
n_best_size=args.n_best_size,
max_answer_length=args.max_answer_length,
do_lower_case=tokenizer.lower)
f1, em, _, __ = mrc_metrics.evaluate(dev_file, all_pred)
model.train()
log.debug('done eval')
return f1, em
def train(model, train_dataset, dev_dataset, dev_examples, dev_features, tokenizer, args):
ctx = D.parallel.prepare_context()
model = D.parallel.DataParallel(model, ctx)
max_steps = len(train_features) * args.epoch // args.bsz
opt = AdamW(learning_rate=args.lr, parameter_list=model.parameters(), weight_decay=args.wd)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
train_dataset = train_dataset \
.repeat() \
.shard(D.parallel.Env().nranks, D.parallel.Env().dev_id) \
.shuffle(1000) \
.padded_batch(args.bsz)
log.debug('init training with args: %s' % repr(args))
for step, (_, token_ids, token_type_ids, start_pos, end_pos) in enumerate(train_dataset.start(place)):
loss, _, __ = model(token_ids, token_type_ids, start_pos=start_pos, end_pos=end_pos)
scaled_loss = model.scale_loss(loss)
scaled_loss.backward()
model.apply_collective_grads()
opt.minimize(scaled_loss, grad_clip=g_clip)
model.clear_gradients()
if D.parallel.Env().dev_id == 0 and step % 10 == 0:
log.debug('[step %d] train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr()))
if D.parallel.Env().dev_id == 0 and step % 100 == 0:
f1, em = evaluate(model, dev_dataset, dev_examples, dev_features, tokenizer, args)
log.debug('[step %d] eval result: f1 %.5f em %.5f' % (step, f1, em))
if step > max_steps:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser('MRC model with ERNIE')
parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
parser.add_argument('--max_seqlen', type=int, default=512, help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=8, help='batchsize')
parser.add_argument('--epoch', type=int, default=2, help='epoch')
parser.add_argument('--train_file', type=str, required=True, help='data directory includes train / develop data')
parser.add_argument('--dev_file', type=str, required=True, help='data directory includes train / develop data')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=3e-5, help='learning rate')
parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
parser.add_argument('--n_best_size', type=int, default=20, help='nbest prediction to keep')
parser.add_argument('--max_answer_length', type=int, default=100, help='max answer span')
parser.add_argument('--wd', type=float, default=0.00, help='weight decay, aka L2 regularizer')
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
if not os.path.exists(args.train_file):
raise RuntimeError('input data not found at %s' % args.train_file)
if not os.path.exists(args.dev_file):
raise RuntimeError('input data not found at %s' % args.dev_file)
log.info('making train/dev data...')
train_examples = mrc_reader.read_files(args.train_file, is_training=True)
train_features = mrc_reader.convert_example_to_features(train_examples, args.max_seqlen, tokenizer, is_training=True)
dev_examples = mrc_reader.read_files(args.dev_file, is_training=False)
dev_features = mrc_reader.convert_example_to_features(dev_examples, args.max_seqlen, tokenizer, is_training=False)
log.info('train examples: %d, features: %d' % (len(train_examples), len(train_features)))
def map_fn(unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, token_ids, position_ids, text_type_ids, start_position, end_position):
if start_position is None:
start_position = 0
if end_position is None:
end_position = 0
return np.array(unique_id), np.array(token_ids), np.array(text_type_ids), np.array(start_position), np.array(end_position)
train_dataset = propeller.data.Dataset.from_list(train_features).map(map_fn)
dev_dataset = propeller.data.Dataset.from_list(dev_features).map(map_fn).padded_batch(args.bsz)
shapes = ([-1], [-1, args.max_seqlen], [-1, args.max_seqlen], [-1], [-1])
types = ('int64', 'int64', 'int64', 'int64', 'int64')
train_dataset.name = 'train'
dev_dataset.name = 'dev'
train_dataset.data_shapes = shapes
train_dataset.data_types = types
dev_dataset.data_shapes = shapes
dev_dataset.data_types = types
place = F.CUDAPlace(D.parallel.Env().dev_id)
D.guard(place).__enter__()
model = ErnieModelForQuestionAnswering.from_pretrained(args.from_pretrained, name='')
train(model, train_dataset, dev_dataset, dev_examples, dev_features, tokenizer, args)
if D.parallel.Env().dev_id == 0:
f1, em = evaluate(model, dev_dataset, dev_examples, dev_features, tokenizer, args)
log.debug('final eval result: f1 %.5f em %.5f' % (f1, em))
if D.parallel.Env().dev_id == 0 and args.save_dir is not None:
F.save_dygraph(model.state_dict(), args.save_dir)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import six
import json
from random import random
from tqdm import tqdm
from collections import OrderedDict
from functools import reduce, partial
import numpy as np
import multiprocessing
import pickle
import jieba
import logging
from sklearn.metrics import f1_score
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification, ErnieModelForTokenClassification
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.optimization import AdamW, LinearDecay
if __name__ == '__main__':
parser = propeller.ArgumentParser('NER model with ERNIE')
parser.add_argument('--max_seqlen', type=int, default=256)
parser.add_argument('--bsz', type=int, default=32)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--epoch', type=int, default=3)
parser.add_argument('--warmup_steps', type=int, default=1000)
parser.add_argument('--max_steps', type=int, default=30000)
parser.add_argument('--from_pretrained', type=str, required=True)
parser.add_argument('--lr', type=float, default=5e-5)
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
def tokenizer_func(inputs):
ret = inputs.split(b'\2')
tokens, orig_pos = [], []
for i, r in enumerate(ret):
t = tokenizer.tokenize(r)
for tt in t:
tokens.append(tt)
orig_pos.append(i)
assert len(tokens) == len(orig_pos)
return tokens + orig_pos
def tokenizer_func_for_label(inputs):
return inputs.split(b'\2')
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('text_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer_func),
propeller.data.TextColumn('label', unk_id=6, vocab_dict={
b"B-PER": 0,
b"I-PER": 1,
b"B-ORG": 2,
b"I-ORG": 3,
b"B-LOC": 4,
b"I-LOC": 5,
},
tokenizer=tokenizer_func_for_label,)
])
def before(seg, label):
seg, orig_pos = np.split(seg, 2)
aligned_label = label[orig_pos]
seg, _ = tokenizer.truncate(seg, [], args.max_seqlen)
aligned_label, _ = tokenizer.truncate(aligned_label, [], args.max_seqlen)
orig_pos, _ = tokenizer.truncate(orig_pos, [], args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg) #utils.data.build_1_pair(seg, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
aligned_label = np.concatenate([[-100], aligned_label, [-100]], 0)
orig_pos = np.concatenate([[-100], orig_pos, [-100]])
assert len(aligned_label) == len(sentence) == len(orig_pos), (len(aligned_label), len(sentence), len(orig_pos)) # alinged
return sentence, segments, aligned_label, label, orig_pos
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0, 0, -100, -100, -100)) \
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0, 0, -100, -100, -100)) \
test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
.map(before) \
.padded_batch(args.bsz, (0, 0, -100, -100, -100)) \
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1, args.max_seqlen])
types = ('int64', 'int64', 'int64')
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
test_ds.data_shapes = shapes
test_ds.data_types = types
with FD.guard():
model = ErnieModelForTokenClassification.from_pretrained(args.from_pretrained, num_labels=7, name='')
opt = AdamW(learning_rate=LinearDecay(args.lr, args.warmup_steps, args.max_steps), parameter_list=model.parameters(), weight_decay=0.01)
#opt = F.optimizer.AdamOptimizer(learning_rate=LinearDecay(args.lr, args.warmup_steps, args.max_steps), parameter_list=model.parameters())
for epoch in range(args.epoch):
for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(train_ds.start())):
loss, _ = model(ids, sids, labels=aligned_label)
loss.backward()
if step % 10 == 0 :
log.debug('train loss %.5f' % loss.numpy())
opt.minimize(loss)
model.clear_gradients()
if step % 100 == 0 :
all_pred, all_label = [], []
with FD.base._switch_tracer_mode_guard_(is_train=False):
model.eval()
for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(dev_ds.start())):
loss, logits = model(ids, sids, labels=aligned_label)
#print('\n'.join(map(str, logits.numpy().tolist())))
for pos, lo, la in zip(orig_pos.numpy(), logits.numpy(), label.numpy()):
_dic = OrderedDict()
for p, l in zip(pos, lo):
_dic.setdefault(p, []).append(l)
del _dic[-100] # delete cls/sep/pad position
merged_lo = np.array([np.array(l).mean(0) for _, l in six.iteritems(_dic)])
merged_preds = np.argmax(merged_lo, -1)
la = la[np.where(la!=-100)] #remove pad
if len(la) > len(merged_preds):
log.warn('accuracy loss due to truncation: label len:%d, truncate to %d' % (len(la), len(merged_preds)))
merged_preds = np.pad(merged_preds, [0, len(la) - len(merged_preds)], mode='constant', constant_values=-100)
all_label.append(la)
all_pred.append(merged_preds)
model.train()
f1 = f1_score(np.concatenate(all_label), np.concatenate(all_pred), average='macro')
log.debug('eval f1: %.5f' % f1)
F.save_dygraph(model.state_dict(), './saved')
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
import numpy as np
import logging
import argparse
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().addHandler(log.handlers[0])
logging.getLogger().setLevel(logging.DEBUG)
log = logging.getLogger()
#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay
if __name__ == '__main__':
parser = argparse.ArgumentParser('classify model with ERNIE')
parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=32, help='batchsize')
parser.add_argument('--epoch', type=int, default=3, help='epoch')
parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
parser.add_argument('--max_steps', type=int, required=True, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
args = parser.parse_args()
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
place = F.CUDAPlace(0)
with FD.guard(place):
model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')
if not args.eval:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn('label'),
])
def map_fn(seg_a, label):
seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, [])
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz)
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(args.bsz)
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
types = ('int64', 'int64', 'int64')
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
opt = AdamW(learning_rate=LinearDecay(
args.lr,
int(args.warmup_proportion * args.max_steps), args.max_steps),
parameter_list=model.parameters(),
weight_decay=args.wd)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
for epoch in range(args.epoch):
for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
ids, sids, label = d
loss, _ = model(ids, sids, labels=label)
loss.backward()
if step % 10 == 0:
log.debug('train loss %.5f lr %.3e' % (loss.numpy(), opt.current_step_lr()))
opt.minimize(loss, grad_clip=g_clip)
model.clear_gradients()
if step % 100 == 0:
acc = []
with FD.base._switch_tracer_mode_guard_(is_train=False):
model.eval()
for step, d in enumerate(tqdm(dev_ds.start(), desc='evaluating %d' % epoch)):
ids, sids, label = d
loss, logits = model(ids, sids, labels=label)
#print('\n'.join(map(str, logits.numpy().tolist())))
a = L.argmax(logits, -1) == label
acc.append(a.numpy())
model.train()
log.debug('acc %.5f' % np.concatenate(acc).mean())
if args.save_dir is not None:
F.save_dygraph(model.state_dict(), args.save_dir)
else:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
])
assert args.save_dir is not None
sd, _ = FD.load_dygraph(args.save_dir)
model.set_dict(sd)
model.eval()
def map_fn(seg_a):
seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, [])
return sentence, segments
predict_ds = feature_column.build_dataset_from_stdin('predict') \
.map(map_fn) \
.padded_batch(args.bsz)
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen])
types = ('int64', 'int64')
predict_ds.data_shapes = shapes
predict_ds.data_types = types
for step, (ids, sids) in enumerate(predict_ds.start(place)):
_, logits = model(ids, sids)
pred = logits.numpy().argmax(-1)
print('\n'.join(map(str, pred.tolist())))
此差异已折叠。
# Distributed Pretrain
only **mask word** strategy from [Ernie1.0](https://arxiv.org/pdf/1904.09223.pdf) is illustrated in this section.
1. make pretrain data
we use documents from multiple datasource (e.g. Wikipedia) to pretrain.
input text should be segmented with space (even in chinese, this segmentation is used for *mask word*).
each line corresonds to a *sentence*.
empty line indicates end of document.
example:
> 数学 是 利用 符号语言 研究 数量 、 结构 、 变化 以及 空间 等 概念 的 一门 学科 , 从 某种 角度看 属于 形式 科学 的 一种 。
> 数学 透过 抽象化 和 逻辑推理 的 使用 , 由 计数 、 计算 、 量度 和 对 物体 形状 及 运动 的 观察 而 产生 。
> 数学家 们 拓展 这些 概念 , 为了 公式化 新 的 猜想 以及 从 选定 的 公理 及 定义 中 建立 起 严谨 推导 出 的 定理 。
> 基础 数学 的 知识 与 运用 总是 个人 与 团体 生活 中 不可或缺 的 一环 。
> 对 数学 基本概念 的 完善 , 早 在 古埃及 、 美索不达米亚 及 古印度 内 的 古代 数学 文本 便 可观 见 , 而 在 古希腊 那里 有 更为 严谨 的 处理 。
> 从 那时 开始 , 数学 的 发展 便 持续 不断 地 小幅 进展 , 至 16 世纪 的 文艺复兴 时期 , 因为 新 的 科学 发现 和 数学 革新 两者 的 交互 , 致使 数学 的 加速 发展 , 直至 今日 。
>
> 云外镜 ( ) 是 一种 能 反映 遥远 地方 影像 的 镜子 , 就 好比 现在 的 电视 , 或是 吉卜赛人 占卜 用 的 水晶球 一样 。
> 它 属于 付丧神 的 一种 , 是 镜子 历经 百年 后 幻化 而成 的 妖怪 , 又名 镜 妖 。
> 也 有人 说云 外镜 是 狸 妖 幻化 而成 的 , 当狸 妖 的 肚子 胀大 , 像 电视 的 映像管 一样 发光 时 , 就 可以 自由 地 显现出 远方 的 情景 。
> 著名 的 妖怪 绘师 鸟 山石 燕曾 记载 云外镜 经常 容易 跟 照妖镜 搞混 , 因为 照妖镜 可以 映照 出 肉眼 看不见 的 妖怪 , 这点 与 云外 镜会 映照 出 怪异 的 脸孔 是 有些 相似 。
> 据说 在 阴历 八月 十五日 的 夜晚 , 在 水晶 盆内 注满 水 , 将 镜子 平 放在 水面 , 若 是 映照 出 妖怪 的 模样 , 就 表示 这 面 镜子 里 住 著 妖怪 。
make pretrain data with:
```script
python3 ernie/pretrain/make_pretrain_data.py input_file output_file.gz --vocab ./pretrained/vocab.txt
```
2. run distributed pretrain
```sript
python3 -m paddle.distributed.launch \
./ernie/pretrain/pretrain_dygraph.py \
--data_dir data/* \
--from_pretrained ./ernie_1.0_pretrain_dir/
```
import sys
import argparse
import struct
#import jieba
import random as r
import re
import gzip
import logging
from itertools import accumulate
from functools import reduce, partial, wraps
from propeller import log
from propeller.paddle.data import feature_pb2, example_pb2
#jfrom data_util import RawtextColumn
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
def gen_segs(segment_piece):
if len(segment_piece) == 0:
return []
else:
return [min(segment_piece)] * len(segment_piece)
whit_space_pat = re.compile(r'\S+')
def segment(inputs, inputs_segment):
ret = [r.span() for r in whit_space_pat.finditer(inputs)]
ret = [(inputs[s: e], gen_segs(inputs_segment[s: e])) for i, (s, e) in enumerate(ret)]
return ret
def tokenize(sen, seg_info):
"""
char tokenizer (wordpiece english)
normed txt(space seperated or not) => list of word-piece
"""
sen = sen.lower()
res_word, res_segments = [], []
for match in pat.finditer(sen):
words, pos = _wordpiece(match.group(0), vocab=vocab_set, unk_token='[UNK]')
start_of_word = match.span()[0]
for w, p in zip(words, pos):
res_word.append(w)
res_segments.append(gen_segs(seg_info[p[0] + start_of_word: p[1] + start_of_word]))
return res_word, res_segments
def parse_txt(line):
if len(line) == 0:
return []
line = line.decode('utf8')
ret_line, ret_seginfo = [], []
for l, i in segment(line, list(range(len(line)))):
for ll, ii in zip(*tokenize(l, i)):
ret_line.append(ll)
ret_seginfo.append(ii)
if args.check and r.random() < 0.005:
print('****', file=sys.stderr)
print(line, file=sys.stderr)
print('|'.join(ret_line), file=sys.stderr)
print(ret_seginfo, file=sys.stderr)
print('****', file=sys.stderr)
ret_line = [vocab.get(r, vocab['[UNK]']) for r in ret_line]
ret_seginfo = [[-1] if i == [] else i for i in ret_seginfo] #for sentence piece only
ret_seginfo = [min(i) for i in ret_seginfo]
return ret_line, ret_seginfo
def build_example(slots):
txt, seginfo = slots
txt_fe_list = feature_pb2.FeatureList(feature=[feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=t)) for t in txt])
segsinfo_fe_list = feature_pb2.FeatureList(feature=[feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=s)) for s in seginfo])
assert len(txt_fe_list.feature) == len(segsinfo_fe_list.feature), 'txt[%d] and seginfo[%d] size not match' % (len(txt_fe_list.feature), len(segsinfo_fe_list.feature))
features = {
'txt': txt_fe_list,
'segs': segsinfo_fe_list,
}
ex = example_pb2.SequenceExample(feature_lists=feature_pb2.FeatureLists(feature_list=features))
return ex
def write_gz(serialized, to_file):
l = len(serialized)
packed_data = struct.pack('i%ds' % l, l, serialized)
to_file.write(packed_data)
def build_bb(from_file, to_file):
slots = []
for i, line in enumerate(from_file):
line = line.strip()
if args.verbose and i % 10000 == 0:
log.debug(i)
if len(line) == 0:
if len(slots) != 0:
transposed_slots = list(zip(*slots))
ex = build_example(transposed_slots)
write_gz(ex.SerializeToString(), to_file)
slots = []
continue
parsed_line = parse_txt(line)
slots.append(parsed_line)
if len(slots) != 0:
transposed_slots = list(zip(*slots))
ex = build_example(transposed_slots)
write_gz(ex.SerializeToString(), to_file)
slots = []
if __name__ == '__main__':
parser = argparse.ArgumentParser('Pretrain Data Maker')
parser.add_argument('src', type=str)
parser.add_argument('tgt', type=str)
parser.add_argument('--vocab', type=str, required=True)
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('-c', '--check', action='store_true')
args = parser.parse_args()
log.setLevel(logging.DEBUG)
from tokenizing_ernie import _wordpiece
pat = re.compile(r'([a-zA-Z0-9]+|\S)')
vocab = {j.strip().split(b'\t')[0].decode('utf8'): i for i, j in enumerate(open(args.vocab, 'rb'))}
vocab_set = set(vocab.keys())
with open(args.src, 'rb') as from_file, gzip.open(args.tgt, 'wb') as to_file:
log.info('making gz from bb %s ==> %s' % (from_file, to_file))
build_bb(from_file, to_file)
log.info('done: %s' % to_file)
此差异已折叠。
此差异已折叠。
......@@ -2,8 +2,6 @@
* [ERNIE数据蒸馏三步](#ernie数据蒸馏三步)
* [数据增强](#数据增强)
* [使用教程](#使用教程)
* [离线蒸馏](#离线蒸馏)
* [在线蒸馏](#在线蒸馏)
* [效果验证](#效果验证)
* [Case#1 用户提供“无标注数据”](#case1)
* [Case#2 用户未提供“无标注数据”](#case2)
......@@ -39,73 +37,11 @@
# 使用教程
我们采用上述3种增强策略制作了chnsenticorp的增强数据:增强后的数据为原训练数据的10倍(96000行),可以从[这里](https://ernie.bj.bcebos.com/distill_data.tar.gz)下载。将下载的 `distill` 文件夹放入 `${TASK_DATA_PATH}`即可执行下面的脚本开始蒸馏。
我们采用上述3种增强策略制作了chnsenticorp的增强数据:增强后的数据为原训练数据的10倍(96000行),可以从[这里](https://ernie.bj.bcebos.com/distill_data.tar.gz)下载。即可执行下面的脚本开始蒸馏。
### 离线蒸馏
离线蒸馏指的是先通过训练好的ERNIE模型预测出无监督数据的label,然后student模型去学习这些label。只需执行
```script
sh ./distill/script/distill_chnsenticorp.sh
```shell
python ./distill/distill.py
```
即可开始离线蒸馏。
该脚本会进行前述的三步:1. 在任务数据上Fine-tune。 2. 加载Fine-tune好的模型对增强数据进行打分。 3.使用Student模型进行训练。脚本采用hard-label蒸馏,在第二步中将会直接预测出ERNIE标注的label。
该脚本涉及两个python文件:`./example/finetune_classifier.py` 负责finetune以及预测teacher模型, `distill/distill_chnsentocorp.py` 负责student模型的训练。事先构造好的增强数据放在`${TASK_DATA_PATH}/distill/chnsenticorp/student/unsup_train_aug`
在脚本的第二步中,使用 `--do_predict` 参数进入预测模式:
```script
cat ${TASK_DATA_PATH}/distill/chnsenticorp/student/unsup_train_aug/part.0 |python3 -u ./example/finetune_classifier.py \
--do_predict \
--data_dir ${TASK_DATA_PATH}/distill/chnsenticorp/teacher \
--warm_start_from ${MODEL_PATH}/params \
--vocab_file ${MODEL_PATH}/vocab.txt \
...
```
脚本从标准输入获取明文输入,并将打分输出到标准输出。用这种方式对数据增强后的无监督训练预料进行标注。最终的标注结果放在 `prediction_output/part.0` 文件中。标注结果包含两列, 第一列为明文,第二列为标注label。
在第三步开始student模型的训练:
```script
python3 ./distill/distill_chnsentocorp.py \
--data_dir ${TASK_DATA_PATH}/distill/chnsenticorp/student \
--vocab_file ${TASK_DATA_PATH}/distill/chnsenticorp/student/vocab.txt \
--unsupervise_data_dir ./prediction_output/ \
--max_seqlen 128 \
...
```
训练流程与第一步相同,`--data_dir` 指定的监督数据,`--unsupervise_data_dir` 指定ERNIE标注数据。Student模型是一个简单的BOW模型,其定义位于`distill/distill_chnsentocorp.py`。用户只需改写其中的model部分即可实现定制蒸馏模型。
如果用户已经拥有了无监督数据,则可以将无监督数据放入 `${TASK_DATA_PATH}/distill/chnsenticorp/student/unsup_train_aug` 即可。
### 在线蒸馏
考虑到在某些场景下,无监督数据过大导致预测过程十分耗时,或者ERNIE预测出的分布过大而无法预先存放在磁盘中。针对这种场景我们提出一种 **在线蒸馏** 方案。采用`propeller` 进行fine-tune并使用 `BestInferenceModelExporter` 后,`propeller` 会自动将指标最好的模型保存为paddle inference model格式,随后启动一个预测服务。Student模型在训练的同时,实时地访问这个服务来获得ERNIE的预测打分。只需执行
```
sh ./distill/script/distill_chnsenticorp_with_propeller_server.sh
```
即可完成上述流程。
流程包含3步:1. finetune ERNIE模型。2. 取指标最好的ERNIE模型启动`propeller`服务。 3.在student模型的训练过程中访问服务获取teacher模型的标注。
此流程涉及两个python文件: `example/finetune_classifier.py``distill/distill_chnsentocorp_with_propeller_server.py` 。其中第一步与离线蒸馏中的用法完全一样。
第二步中使用
```script
python3 -m propeller.tools.start_server -p 8113 -m ${teacher_dir}/best/inference/ &
```
启动一个ernie预测服务
第三步开始student模型的同步训练:
```script
python3 ./distill/distill_chnsentocorp_with_propeller_server.py \
--data_dir ${TASK_DATA_PATH}/distill/chnsenticorp/student \
--vocab_file ${TASK_DATA_PATH}/distill/chnsenticorp/student/vocab.txt \
--teacher_vocab_file ${MODEL_PATH}/vocab.txt \
--max_seqlen 128 \
--teacher_max_seqlen 128 \
--server_batch_size 64 \
--teacher_host tcp://localhost:8113 \
--num_coroutine 10
```
该脚本将`${TASK_DATA_PATH}/distill/chnsenticorp/student/unsup_train_aug` 目录下的增强数据进行切字并请求`propeller` 服务。`--num_coroutine` 指定了请求的并发数,`--teacher_host` 指定了服务的端口和IP,`--server_batch_size` 指定了请求的batch_size,在实际的请求中每个batch的数据会拆分成若干个 `--server_batch_size` 大小的数据去请求服务。
# 效果验证
我们将实际应用场景分类为两种:
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
set -x
(($#!=2)) && echo "Usage predict_file label_file" && exit -1
PRED=$1
PREFIX=$2
python pyrouge_set_rouge_path.py `pwd`/file2rouge/
python cnndm/eval.py --pred ${PRED} \
--gold ${PREFIX} --trunc_len 100 --perl
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册