@@ -43,11 +43,11 @@ Specifically, the span-by-span generation task and word-by-word generation task
## Pre-trained Models
We release the checkpoints for **ERNIE-GEN _base_** model and **ERNIE-GEN _large_** model which are both pre-trained on English Wikipedia and [BookCorpus](https://arxiv.org/abs/1506.06724)(totally 16GB). Besides, **ERNIE-GEN _large_** pre-trained on the 160GB corpus (used by [RoBERTa](https://arxiv.org/abs/1907.11692) and [BART](https://arxiv.org/abs/1910.13461)) is available as well.
We release the checkpoints for **ERNIE-GEN _base_** model and **ERNIE-GEN _large_** model which are both pre-trained on English Wikipedia and [BookCorpus](https://arxiv.org/abs/1506.06724)(totally 16GB). Besides, **ERNIE-GEN _large_** pre-trained on the 430GB corpus (see [ERNIE-GEN Appendix A.1](https://arxiv.org/abs/2001.11314) for the description of the corpus) is available as well.
We preprocess the raw Gigaword dataset following UniLM, the preprocessed data is avalilable at this [Gigaword](https://ernie.bj.bcebos.com/gigaword.tgz).
...
...
@@ -97,7 +97,7 @@ The results on CNN/Daily Mail are presented as follows:
We preprocess the raw CNN/Daily Mail dataset following UniLM, the preprocessed data is avalilable at this [CNN/Daily Mail](https://ernie.bj.bcebos.com/cnndm.tgz).
...
...
@@ -114,7 +114,7 @@ The results on the [SQuAD 1.1](https://arxiv.org/abs/1806.03822) dataset followi
*_Note that we also report the results with higher beam size to 5._
...
...
@@ -161,24 +161,6 @@ Results of development set on CoQA task is presented as follows:
We preprocess the raw [CoQA](https://arxiv.org/abs/1808.07042) dataset, the preprocessed data is avalilable at this [CoQA-preprocessed](https://ernie.bj.bcebos.com/coqa.tgz).
Finally, we also compared with a concurrent work [ProphetNet](https://arxiv.org/abs/2001.04063), the fine-tuning results on Gigaword, CNN/Daily Mail and SQuAD are reported as follows:
Please update LD_LIBRARY_PATH about CUDA, cuDNN, NCCL2 before running ERNIE-GEN. We have put the parameter configurations of the above downstream tasks in `config/`. You can easily run finetuning through these configuration files. For example, you can finetune ERNIE-GEN base model on Gigaword by
```script
MODEL="base" # base or large or large_160g
MODEL="base" # base or large or large_430g
TASK="gigaword" # cnndm, coqa, gigaword, squad_qg or persona-chat