From 7d7dadd1e8a98d847cb2f852945ccbdcf6e3edd3 Mon Sep 17 00:00:00 2001 From: Meiyim Date: Wed, 27 May 2020 23:36:45 +0800 Subject: [PATCH] fix #470 (#471) * Update README.md * fix grad_clip * fix distill * up distill --- demo/finetune_mrc_dygraph.py | 4 +- demo/finetune_ner_dygraph.py | 1 - demo/finetune_sentiment_analysis_dygraph.py | 8 +-- distill/README.md | 8 +-- distill/distill.py | 59 ++++++++++++--------- 5 files changed, 42 insertions(+), 38 deletions(-) diff --git a/demo/finetune_mrc_dygraph.py b/demo/finetune_mrc_dygraph.py index de0668d..13d1e8b 100644 --- a/demo/finetune_mrc_dygraph.py +++ b/demo/finetune_mrc_dygraph.py @@ -82,8 +82,8 @@ def train(model, train_dataset, dev_dataset, dev_examples, dev_features, tokeniz model = D.parallel.DataParallel(model, ctx) max_steps = len(train_features) * args.epoch // args.bsz - opt = AdamW(learning_rate=args.lr, parameter_list=model.parameters(), weight_decay=args.wd) g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental + opt = AdamW(learning_rate=args.lr, parameter_list=model.parameters(), weight_decay=args.wd, grad_clip=g_clip) train_dataset = train_dataset \ .repeat() \ @@ -97,7 +97,7 @@ def train(model, train_dataset, dev_dataset, dev_examples, dev_features, tokeniz scaled_loss = model.scale_loss(loss) scaled_loss.backward() model.apply_collective_grads() - opt.minimize(scaled_loss, grad_clip=g_clip) + opt.minimize(scaled_loss) model.clear_gradients() if D.parallel.Env().dev_id == 0 and step % 10 == 0: log.debug('[step %d] train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) diff --git a/demo/finetune_ner_dygraph.py b/demo/finetune_ner_dygraph.py index cf1615a..4395d6a 100644 --- a/demo/finetune_ner_dygraph.py +++ b/demo/finetune_ner_dygraph.py @@ -26,7 +26,6 @@ from functools import reduce, partial import numpy as np import multiprocessing import pickle -import jieba import logging from sklearn.metrics import f1_score diff --git a/demo/finetune_sentiment_analysis_dygraph.py b/demo/finetune_sentiment_analysis_dygraph.py index 17ea384..7a01899 100644 --- a/demo/finetune_sentiment_analysis_dygraph.py +++ b/demo/finetune_sentiment_analysis_dygraph.py @@ -95,12 +95,14 @@ if __name__ == '__main__': dev_ds.data_shapes = shapes dev_ds.data_types = types + g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental opt = AdamW(learning_rate=LinearDecay( args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), - weight_decay=args.wd) - g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental + weight_decay=args.wd, + grad_clip=g_clip) + for epoch in range(args.epoch): for step, d in enumerate(tqdm(train_ds.start(place), desc='training')): ids, sids, label = d @@ -108,7 +110,7 @@ if __name__ == '__main__': loss.backward() if step % 10 == 0: log.debug('train loss %.5f lr %.3e' % (loss.numpy(), opt.current_step_lr())) - opt.minimize(loss, grad_clip=g_clip) + opt.minimize(loss) model.clear_gradients() if step % 100 == 0: acc = [] diff --git a/distill/README.md b/distill/README.md index 586ac84..78c3e73 100644 --- a/distill/README.md +++ b/distill/README.md @@ -5,7 +5,6 @@ * [效果验证](#效果验证) * [Case#1 用户提供“无标注数据”](#case1) * [Case#2 用户未提供“无标注数据”](#case2) -* [FAQ](#faq) # ERNIE Slim 数据蒸馏 在ERNIE强大的语义理解能力背后,是需要同样强大的算力才能支撑起如此大规模模型的训练和预测。很多工业应用场景对性能要求较高,若不能有效压缩则无法实际应用。 @@ -37,7 +36,7 @@ # 使用教程 -我们采用上述3种增强策略制作了chnsenticorp的增强数据:增强后的数据为原训练数据的10倍(96000行),可以从[这里](https://ernie.bj.bcebos.com/distill_data.tar.gz)下载。即可执行下面的脚本开始蒸馏。 +我们采用上述3种增强策略制作了chnsenticorp的增强数据:增强后的数据为原训练数据的10倍(96000行),可以从[这里](https://ernie-github.cdn.bcebos.com/data-chnsenticorp-distill.tar.gz)下载。即可执行下面的脚本开始蒸馏。 ```shell python ./distill/distill.py @@ -64,8 +63,3 @@ python ./distill/distill.py |非ERNIE基线(LSTM)|91.2%| |**+ 数据蒸馏**|93.9%| -# FAQ - -### FQA1: 预测同时蒸馏报错:`Client call failed` - -终端打印的错误是client的日志,server端的日志在前面。一般来说可能是server显存超限导致。这种时候需要在student模型finetune的脚本中使用`--server_batch_size ` 显示控制请求服务的batch大小。 diff --git a/distill/distill.py b/distill/distill.py index 69ad761..534d895 100644 --- a/distill/distill.py +++ b/distill/distill.py @@ -30,12 +30,13 @@ from ernie.optimization import AdamW, LinearDecay # 本例子采用chnsenticorp中文情感识别任务作为示范;并且事先通过数据增强扩充了蒸馏所需的无监督数据 # -# 请从“”下载数据;并数据存放在 ./chnsenticorp-data/ +# 下载数据;并存放在 ./chnsenticorp-data/ # 数据分为3列:原文;空格切词;情感标签 # 其中第一列为ERNIE的输入;第二列为BoW词袋模型的输入 # 事先统计好的BoW 词典在 ./chnsenticorp-data/vocab.bow.txt # 定义finetune teacher模型所需要的超参数 +DATA_DIR='./chnsenticorp-data/' SEQLEN=256 BATCH=32 EPOCH=10 @@ -43,7 +44,7 @@ LR=5e-5 tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0') -student_vocab = {i.strip(): l for l, i in enumerate(open('./chnsenticorp-data/vocab.bow.txt').readlines())} +student_vocab = {i.strip(): l for l, i in enumerate(open(os.path.join(DATA_DIR, 'vocab.bow.txt')).readlines())} def space_tokenizer(i): return i.decode('utf8').split() @@ -63,11 +64,17 @@ def map_fn(seg_a, seg_a_student, label): return seg_a_student, sentence, segments, label -train_ds = feature_column.build_dataset('train', data_dir='./chnsenticorp-data/train/', shuffle=True, repeat=False, use_gz=False) .map(map_fn) .padded_batch(BATCH,) +train_ds = feature_column.build_dataset('train', data_dir=os.path.join(DATA_DIR, 'train/'), shuffle=True, repeat=False, use_gz=False) \ + .map(map_fn) \ + .padded_batch(BATCH) -train_ds_unlabel = feature_column.build_dataset('train-da', data_dir='./chnsenticorp-data/train-data-augmented/', shuffle=True, repeat=False, use_gz=False) .map(map_fn) .padded_batch(BATCH,) +train_ds_unlabel = feature_column.build_dataset('train-da', data_dir=os.path.join(DATA_DIR, 'train-data-augmented/'), shuffle=True, repeat=False, use_gz=False) \ + .map(map_fn) \ + .padded_batch(BATCH) -dev_ds = feature_column.build_dataset('dev', data_dir='./chnsenticorp-data/dev/', shuffle=False, repeat=False, use_gz=False) .map(map_fn) .padded_batch(BATCH,) +dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(DATA_DIR, 'dev/'), shuffle=False, repeat=False, use_gz=False) \ + .map(map_fn) \ + .padded_batch(BATCH,) shapes = ([-1,SEQLEN],[-1,SEQLEN], [-1, SEQLEN], [-1]) types = ('int64', 'int64', 'int64', 'int64') @@ -99,15 +106,15 @@ def evaluate_teacher(model, dataset): teacher_model = ErnieModelForSequenceClassification.from_pretrained('ernie-1.0', num_labels=2) teacher_model.train() if not os.path.exists('./teacher_model.pdparams'): - opt = AdamW(learning_rate=LinearDecay(LR, 9600*EPOCH*0.1/BATCH, 9600*EPOCH/BATCH), parameter_list=teacher_model.parameters(), weight_decay=0.01) g_clip = F.clip.GradientClipByGlobalNorm(1.0) + opt = AdamW(learning_rate=LinearDecay(LR, 9600*EPOCH*0.1/BATCH, 9600*EPOCH/BATCH), parameter_list=teacher_model.parameters(), weight_decay=0.01, grad_clip=g_clip) for epoch in range(EPOCH): for step, (ids_student, ids, sids, labels) in enumerate(train_ds.start(place)): loss, logits = teacher_model(ids, labels=labels) loss.backward() if step % 10 == 0: print('[step %03d] teacher train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) - opt.minimize(loss, grad_clip=g_clip) + opt.minimize(loss) teacher_model.clear_gradients() if step % 100 == 0: f1 = evaluate_teacher(teacher_model, dev_ds) @@ -199,32 +206,34 @@ def KL(pred, target): teacher_model.eval() model = BOW() -opt = AdamW(learning_rate=LR, parameter_list=model.parameters(), weight_decay=0.01) g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental +opt = AdamW(learning_rate=LR, parameter_list=model.parameters(), weight_decay=0.01, grad_clip=g_clip) model.train() for epoch in range(EPOCH): - for step, (ids_student, ids, sids, _ ) in enumerate(train_ds.start(place)): + for step, (ids_student, ids, sids, label) in enumerate(train_ds.start(place)): _, logits_t = teacher_model(ids, sids) # teacher 模型输出logits logits_t.stop_gradient=True _, logits_s = model(ids_student) # student 模型输出logits - loss = KL(logits_s, logits_t) # 由KL divergence度量两个分布的距离 + loss_ce, _ = model(ids_student, labels=label) + loss_kd = KL(logits_s, logits_t) # 由KL divergence度量两个分布的距离 + loss = loss_ce + loss_kd loss.backward() if step % 10 == 0: - print('[step %03d] 无监督 train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) - opt.minimize(loss, grad_clip=g_clip) + print('[step %03d] distill train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) + opt.minimize(loss) model.clear_gradients() f1 = evaluate_student(model, dev_ds) - print('f1 %.5f' % f1) - - for step, (ids_student, ids, sids, label) in enumerate(train_ds.start(place)): - loss, _ = model(ids_student, labels=label) - loss.backward() - if step % 10 == 0: - print('[step %03d] 监督 train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) - opt.minimize(loss, grad_clip=g_clip) - model.clear_gradients() - - f1 = evaluate_student(model, dev_ds) - print('f1 %.5f' % f1) - + print('student f1 %.5f' % f1) + +# 最后再加一轮hard label训练巩固结果 +for step, (ids_student, ids, sids, label) in enumerate(train_ds.start(place)): + loss, _ = model(ids_student, labels=label) + loss.backward() + if step % 10 == 0: + print('[step %03d] train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr())) + opt.minimize(loss) + model.clear_gradients() + +f1 = evaluate_student(model, dev_ds) +print('final f1 %.5f' % f1) -- GitLab