diff --git a/.gitignore b/.gitignore index f2939c5089a662b6349e5e2d30dec75c9b8e83e5..e814dc821955e824a44bb1b9cf2f3b725e478cd2 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ *.pyc *.un~ +*.swp diff --git a/README.md b/README.md index 334cb4a124cd93a002d5db39e2f4d12dede1c99e..6052a2da92777f9a4d759ded71cc1245a73f3f98 100644 --- a/README.md +++ b/README.md @@ -111,6 +111,7 @@ Integrating both phrase information and named entity information enables the mod ## Release Notes +- Aug 21, 2019: featuers update: fp16 finetuning, multiprocess finetining. - July 30, 2019: release ERNIE 2.0 - Apr 10, 2019: update ERNIE_stable-1.0.1.tar.gz, update config and vocab - Mar 18, 2019: update ERNIE_stable.tgz @@ -339,7 +340,7 @@ XNLI is a natural language inference dataset in 15 languages. It was jointly bui *\*The DRCD dataset is converted from Traditional Chinese to Simplified Chinese based on tool: https://github.com/skydark/nstools/tree/master/zhtools* -\* *The pre-training data of ERNIE 1.0 BASE does not contain instances whose length exceeds 128, but other models is pre-trained with the instances whose length are 512. It causes poorer performance of ERNIE 1.0 BASE on long-text tasks. So We have released [ERNIE 1.0 Base(max-len-512)](https://ernie.bj.bcebos.com/ERNIE_1.0_max-len-512.tar.gz) on July 29th, 2019* +\* *The pre-training data of ERNIE 1.0 BASE does not contain instances whose length exceeds 128, but other models is pre-trained with the instances whose length are 512. It causes poorer performance of ERNIE 1.0 BASE on long-text tasks. So We have released [ERNIE 1.0 Base (max-len-512)](https://ernie.bj.bcebos.com/ERNIE_1.0_max-len-512.tar.gz) on July 29th, 2019* @@ -371,7 +372,7 @@ DRCD is an open domain Traditional Chinese machine reading comprehension (MRC) d Dataset
-
MSRA-NER(SIGHAN2006)
+
MSRA-NER (SIGHAN2006)

@@ -413,10 +414,10 @@ DRCD is an open domain Traditional Chinese machine reading comprehension (MRC) d - - **MSRA-NER(SIGHAN2006)** + - **MSRA-NER (SIGHAN2006)** ```text -MSRA-NER(SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text. +MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text. ``` #### Results on Sentiment Analysis Task @@ -622,7 +623,7 @@ LCQMC is a Chinese question semantic matching corpus published in COLING2018. [u - **BQ Corpus** ```text -BQ Corpus(Bank Question corpus) is a Chinese corpus for sentence semantic equivalence identification. This dataset was published in EMNLP 2018. [url: https://www.aclweb.org/anthology/D18-1536] +BQ Corpus (Bank Question corpus) is a Chinese corpus for sentence semantic equivalence identification. This dataset was published in EMNLP 2018. [url: https://www.aclweb.org/anthology/D18-1536] ``` @@ -635,6 +636,7 @@ BQ Corpus(Bank Question corpus) is a Chinese corpus for sentence semantic equiva * [Chinese Datasets](#chinese-datasets) * [Fine-tuning](#fine-tuning) * [Batchsize and GPU Settings](#batchsize-and-gpu-settings) + * [Multiprocessing and fp16 auto mix-precision finetune](#multiprocessing-and-fp16-auto-mix-precision-finetune) * [Classification](#classification) * [Single Sentence Classification Tasks](#single-sentence-classification-tasks) * [Sentence Pair Classification Tasks](#sentence-pair-classification-tasks) @@ -705,14 +707,14 @@ In our experiments, we found that the batch size is important for different task | Dataset | Batch Size | GPU | | ------------ | --------------- | ------------------- | -| CoLA | 32 / 64(base) | 1 | -| SST-2 | 64 / 256(base) | 8 | +| CoLA | 32 / 64 (base) | 1 | +| SST-2 | 64 / 256 (base) | 8 | | STS-B | 128 | 8 | | QQP | 256 | 8 | -| MNLI | 256 / 512(base) | 8 | +| MNLI | 256 / 512 (base) | 8 | | QNLI | 256 | 8 | -| RTE | 16 / 4(base) | 1 | -| MRPC | 16 / 32(base) | 2 | +| RTE | 16 / 4 (base) | 1 | +| MRPC | 16 / 32 (base) | 2 | | WNLI | 8 | 1 | | XNLI | 65536 (tokens) | 8 | | CMRC2018 | 64 | 8 (large) / 4(base) | @@ -725,6 +727,17 @@ In our experiments, we found that the batch size is important for different task \* *For MNLI, QNLI,we used 32GB V100, for other tasks we used 22GB P40* + +### Multiprocessing and fp16 auto mix-precision finetune + +multiprocessing finetuning can be simply enabled with `finetune_launch.py` in your finetune script. +with multiprocessing finetune paddle can fully utilize your CPU/GPU capacity to accelerate finetuning. +`finetune_launch.py` should place in front of your finetune command. make sure to provide number of process and device id per node by specifiying `--nproc_per_node` and `--selected_gpus`. Number of device ids should match `nproc_per_node` and `CUDA_VISIBLE_DEVICES`, and the indexing should start from 0. + +fp16 finetuning can be simply enable by specifing `--use_fp16 true` in your training script (make sure you use have a Tensor Core device). ERNIE will cast computation op to fp16 precision, while maintain storage in fp32 precision. approximately 60% speedup is seen on XNLI finetuning. +dynamic loss scale is used to avoid gradient vanish. + + ### Classification #### Single Sentence Classification Tasks diff --git a/README.zh.md b/README.zh.md index e42e06bbc813ba16da3518f39bc644b42da5b6f0..430e142761091a0064b2efd1a74518c1bf212d05 100644 --- a/README.zh.md +++ b/README.zh.md @@ -371,10 +371,10 @@ DRCD 是台达研究院发布的繁体中文阅读理解数据集,目标是从 - - **MSRA-NER(SIGHAN2006)** + - **MSRA-NER (SIGHAN2006)** ```text -MSRA-NER(SIGHAN2006) 数据集由微软亚研院发布,其目标是识别文本中具有特定意义的实体,包括人名、地名、机构名。 +MSRA-NER (SIGHAN2006) 数据集由微软亚研院发布,其目标是识别文本中具有特定意义的实体,包括人名、地名、机构名。 ``` @@ -640,6 +640,7 @@ ERNIE 2.0 的英文效果验证在 GLUE 上进行。GLUE 评测的官方地址 * [英文数据](#英文数据) * [Fine-tuning 任务](#fine-tuning-任务) * [运行参数配置](#运行参数配置) + * [多进程训练与fp16混合精度](#多进程训练与fp16混合精度) * [单句和句对分类任务](#单句和句对分类任务) * [单句分类任务](#单句分类任务) * [句对分类任务](#句对分类任务) @@ -720,8 +721,8 @@ ERNIE 2.0 的英文效果验证在 GLUE 上进行。GLUE 评测的官方地址 | MRPC | 16 / 32 (base) | 2 | | WNLI | 8 | 1 | | XNLI | 65536 (tokens) | 8 | -| CMRC2018 | 64 | 8 (large) / 4(base) | -| DRCD | 64 | 8 (large) / 4(base) | +| CMRC2018 | 64 | 8 (large) / 4 (base) | +| DRCD | 64 | 8 (large) / 4 (base) | | MSRA-NER(SIGHAN 2006) | 16 | 1 | | ChnSentiCorp | 24 | 1 | | LCQMC | 32 | 1 | @@ -731,6 +732,12 @@ ERNIE 2.0 的英文效果验证在 GLUE 上进行。GLUE 评测的官方地址 \* *MNLI 和 QNLI 的任务中,使用了 32 GB 显存的 V100。除此之外的显卡皆为22 GB 的 P40。* +### 多进程训练与fp16混合精度 + +使用`finetune_launch.py`脚本来启动多进程训练 。多进程训练可以提升充分利用多核CPU/多卡GPU 的能力来加速finetune过程。 +`finetune_launch.py` 需要放在原来finetune脚本前面, 同时指定每个节点的进程数`--nproc_per_node`, 以及每个节点上的gpu卡号`--selected_gpus`, 一般数量与进程数, `CUDA_VISIBLE_DEVICES`相同且从0开始编号 (参考`script/zh_task/ernie_base/run_xnli.sh`) + +只需在训练脚本中加入`--use_fp16 true`即可启用fp16混合精度训练(确保您的硬件支持Tensor Core技术)。ERNIE会将计算Op转换成fp16精度,同时仍然使用fp32精度存储参数。ERNIE使用动态loss scale来避免梯度消失。在XNLI任务上可以观察到大约60%加速。 ### 单句和句对分类任务 diff --git a/classify_infer.py b/classify_infer.py index f64c8e67d59e6086cbad91907701ebd2aeb57538..6c88b5af4fd40ca50598fe175ac2447027baa56a 100644 --- a/classify_infer.py +++ b/classify_infer.py @@ -11,11 +11,12 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -"""Inference by """ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os import time @@ -39,7 +40,7 @@ from reader.task_reader import ClassifyReader from model.ernie import ErnieConfig from finetune.classifier import create_model -from utils.args import ArgumentGroup, print_arguments +from utils.args import print_arguments, check_cuda, prepare_logger from utils.init import init_pretraining_params from finetune_args import parser @@ -66,6 +67,7 @@ run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for trai run_type_g.add_arg("do_prediction", bool, True, "Whether to do prediction on test set.") args = parser.parse_args() +log = logging.getLogger() # yapf: enable. def main(args): @@ -113,7 +115,7 @@ def main(args): _, ckpt_dir = os.path.split(args.init_checkpoint.rstrip('/')) dir_name = ckpt_dir + '_inference_model' model_path = os.path.join(args.save_inference_model_path, dir_name) - print("save inference model to %s" % model_path) + log.info("save inference model to %s" % model_path) fluid.io.save_inference_model( model_path, feed_target_names, [probs], @@ -125,7 +127,7 @@ def main(args): #config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "")) config = AnalysisConfig(model_path) if not args.use_cuda: - print("disable gpu") + log.info("disable gpu") config.disable_gpu() # Create PaddlePredictor @@ -137,7 +139,7 @@ def main(args): epoch=1, shuffle=False) - print("-------------- prediction results --------------") + log.info("-------------- prediction results --------------") np.set_printoptions(precision=4, suppress=True) index = 0 total_time = 0 @@ -156,14 +158,14 @@ def main(args): # parse outputs output = outputs[0] - print(output.name) + log.info(output.name) output_data = output.data.float_data() #assert len(output_data) == args.num_labels * args.batch_size batch_result = np.array(output_data).reshape((-1, args.num_labels)) for single_example_probs in batch_result: - print("{} example\t{}".format(index, single_example_probs)) + log.info("{} example\t{}".format(index, single_example_probs)) index += 1 - print("qps:{}\ttotal_time:{}\ttotal_example:{}\tbatch_size:{}".format(index/total_time, total_time, index, args.batch_size)) + log.info("qps:{}\ttotal_time:{}\ttotal_example:{}\tbatch_size:{}".format(index/total_time, total_time, index, args.batch_size)) def array2tensor(ndarray): @@ -183,5 +185,6 @@ def array2tensor(ndarray): return tensor if __name__ == '__main__': + prepare_logger(log) print_arguments(args) main(args) diff --git a/ernie_encoder.py b/ernie_encoder.py index 56be900c895f932c3f5b384c4585f50d8989307b..134d1077c904b0806ac5008c1fc05877ec9faa06 100644 --- a/ernie_encoder.py +++ b/ernie_encoder.py @@ -129,8 +129,6 @@ def main(args): pyreader, graph_vars = create_model( args, pyreader_name='reader', ernie_config=ernie_config) - fluid.memory_optimize(input_program=infer_program) - infer_program = infer_program.clone(for_test=True) exe.run(startup_prog) diff --git a/finetune/classifier.py b/finetune/classifier.py index 3e8a855ada9b4b989a022b98584c59db7c3d6171..69646b542645b247b98e1f137236249434558fc1 100644 --- a/finetune/classifier.py +++ b/finetune/classifier.py @@ -16,8 +16,11 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import time +import logging import numpy as np from scipy.stats import pearsonr, spearmanr @@ -26,6 +29,7 @@ import paddle.fluid as fluid from model.ernie import ErnieModel +log = logging.getLogger(__name__) def create_model(args, pyreader_name, diff --git a/finetune/mrc.py b/finetune/mrc.py index ddb55edb4809e204110ef4612a1cbaa4a956d1d0..3a7c5e7ef541705d4a0c88a8aea5f71258b383b6 100644 --- a/finetune/mrc.py +++ b/finetune/mrc.py @@ -16,12 +16,15 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import time import numpy as np import os import math import json +import logging import collections import six @@ -34,6 +37,8 @@ from model.ernie import ErnieModel import tokenization +log = logging.getLogger(__name__) + def create_model(args, pyreader_name, ernie_config, is_training): pyreader = fluid.layers.py_reader( capacity=50, @@ -151,7 +156,7 @@ def evaluate(exe, program=test_program, fetch_list=fetch_list) for idx in range(np_unique_ids.shape[0]): if len(all_results) % 1000 == 0: - print("Processing example: %d" % len(all_results)) + log.info("Processing example: %d" % len(all_results)) unique_id = int(np_unique_ids[idx]) start_logits = [float(x) for x in np_start_logits[idx].flat] end_logits = [float(x) for x in np_end_logits[idx].flat] @@ -179,7 +184,7 @@ def evaluate(exe, time_end = time.time() elapsed_time = time_end - time_begin - print( + log.info( "[%s evaluation] em: %f, f1: %f, avg: %f, questions: %d, elapsed time: %f" % (eval_phase, em, f1, avg, total, elapsed_time)) @@ -188,8 +193,8 @@ def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file): """Write final predictions to the json file and log-odds of null if needed.""" - print("Writing predictions to: %s" % (output_prediction_file)) - print("Writing nbest to: %s" % (output_nbest_file)) + log.info("Writing predictions to: %s" % (output_prediction_file)) + log.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: diff --git a/finetune/sequence_label.py b/finetune/sequence_label.py index 0b3f9d447a584ad35a3e20a14457fea134b9c870..dff0f9c531a57758e08ba635478f901baa54fd5d 100644 --- a/finetune/sequence_label.py +++ b/finetune/sequence_label.py @@ -15,6 +15,9 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + import os import time @@ -23,12 +26,14 @@ import numpy as np import multiprocessing import paddle +import logging import paddle.fluid as fluid from six.moves import xrange from model.ernie import ErnieModel +log = logging.getLogger(__name__) def create_model(args, pyreader_name, ernie_config, is_prediction=False): pyreader = fluid.layers.py_reader( @@ -70,9 +75,7 @@ def create_model(args, pyreader_name, ernie_config, is_prediction=False): initializer=fluid.initializer.Constant(0.))) infers = fluid.layers.argmax(logits, axis=2) - ret_labels = fluid.layers.reshape(x=labels, shape=[-1, 1]) ret_infers = fluid.layers.reshape(x=infers, shape=[-1, 1]) - lod_labels = fluid.layers.sequence_unpad(labels, seq_lens) lod_infers = fluid.layers.sequence_unpad(infers, seq_lens) @@ -92,18 +95,14 @@ def create_model(args, pyreader_name, ernie_config, is_prediction=False): ce_loss = ce_loss * input_mask loss = fluid.layers.mean(x=ce_loss) - if args.use_fp16 and args.loss_scaling > 1.0: - loss *= args.loss_scaling - graph_vars = { + "inputs": src_ids, "loss": loss, "probs": probs, - "labels": ret_labels, - "infers": ret_infers, + "seqlen": seq_lens, "num_infer": num_infer, "num_label": num_label, "num_correct": num_correct, - "seq_lens": seq_lens } for k, v in graph_vars.items(): @@ -112,91 +111,6 @@ def create_model(args, pyreader_name, ernie_config, is_prediction=False): return pyreader, graph_vars -def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1): - def extract_bio_chunk(seq): - chunks = [] - cur_chunk = None - null_index = tag_num - 1 - for index in xrange(len(seq)): - tag = seq[index] - tag_type = tag // 2 - tag_pos = tag % 2 - - if tag == null_index: - if cur_chunk is not None: - chunks.append(cur_chunk) - cur_chunk = None - continue - - if tag_pos == 0: - if cur_chunk is not None: - chunks.append(cur_chunk) - cur_chunk = {} - cur_chunk = {"st": index, "en": index + 1, "type": tag_type} - - else: - if cur_chunk is None: - cur_chunk = {"st": index, "en": index + 1, "type": tag_type} - continue - - if cur_chunk["type"] == tag_type: - cur_chunk["en"] = index + 1 - else: - chunks.append(cur_chunk) - cur_chunk = {"st": index, "en": index + 1, "type": tag_type} - - if cur_chunk is not None: - chunks.append(cur_chunk) - return chunks - - null_index = tag_num - 1 - num_label = 0 - num_infer = 0 - num_correct = 0 - labels = np_labels.reshape([-1]).astype(np.int32).tolist() - infers = np_infers.reshape([-1]).astype(np.int32).tolist() - all_lens = np_lens.reshape([dev_count, -1]).astype(np.int32).tolist() - - base_index = 0 - for dev_index in xrange(dev_count): - lens = all_lens[dev_index] - max_len = 0 - for l in lens: - max_len = max(max_len, l) - - for i in xrange(len(lens)): - seq_st = base_index + i * max_len + 1 - seq_en = seq_st + (lens[i] - 2) - infer_chunks = extract_bio_chunk(infers[seq_st:seq_en]) - label_chunks = extract_bio_chunk(labels[seq_st:seq_en]) - num_infer += len(infer_chunks) - num_label += len(label_chunks) - - infer_index = 0 - label_index = 0 - while label_index < len(label_chunks) \ - and infer_index < len(infer_chunks): - if infer_chunks[infer_index]["st"] \ - < label_chunks[label_index]["st"]: - infer_index += 1 - elif infer_chunks[infer_index]["st"] \ - > label_chunks[label_index]["st"]: - label_index += 1 - else: - if infer_chunks[infer_index]["en"] \ - == label_chunks[label_index]["en"] \ - and infer_chunks[infer_index]["type"] \ - == label_chunks[label_index]["type"]: - num_correct += 1 - - infer_index += 1 - label_index += 1 - - base_index += max_len * len(lens) - - return num_label, num_infer, num_correct - - def calculate_f1(num_label, num_infer, num_correct): if num_infer == 0: precision = 0.0 @@ -220,53 +134,85 @@ def evaluate(exe, pyreader, graph_vars, tag_num, - eval_phase, dev_count=1): fetch_list = [ graph_vars["num_infer"].name, graph_vars["num_label"].name, graph_vars["num_correct"].name ] - if eval_phase == "train": - fetch_list.append(graph_vars["loss"].name) - if "learning_rate" in graph_vars: - fetch_list.append(graph_vars["learning_rate"].name) - outputs = exe.run(fetch_list=fetch_list) - np_num_infer, np_num_label, np_num_correct, np_loss = outputs[:4] - num_label = np.sum(np_num_label) - num_infer = np.sum(np_num_infer) - num_correct = np.sum(np_num_correct) - precision, recall, f1 = calculate_f1(num_label, num_infer, num_correct) - rets = { - "precision": precision, - "recall": recall, - "f1": f1, - "loss": np.mean(np_loss) - } - if "learning_rate" in graph_vars: - rets["lr"] = float(outputs[4][0]) - return rets + total_label, total_infer, total_correct = 0.0, 0.0, 0.0 + time_begin = time.time() + pyreader.start() + while True: + try: + np_num_infer, np_num_label, np_num_correct = exe.run(program=program, + fetch_list=fetch_list) + total_infer += np.sum(np_num_infer) + total_label += np.sum(np_num_label) + total_correct += np.sum(np_num_correct) + + except fluid.core.EOFException: + pyreader.reset() + break + + precision, recall, f1 = calculate_f1(total_label, total_infer, + total_correct) + time_end = time.time() + return \ + "[evaluation] f1: %f, precision: %f, recall: %f, elapsed time: %f s" \ + % (f1, precision, recall, time_end - time_begin) + + +def chunk_predict(np_inputs, np_probs, np_lens, dev_count=1): + inputs = np_inputs.reshape([-1]).astype(np.int32) + probs = np_probs.reshape([-1, np_probs.shape[-1]]) + + all_lens = np_lens.reshape([dev_count, -1]).astype(np.int32).tolist() + + base_index = 0 + out = [] + for dev_index in xrange(dev_count): + lens = all_lens[dev_index] + max_len = 0 + for l in lens: + max_len = max(max_len, l) + + for i in xrange(len(lens)): + seq_st = base_index + i * max_len + 1 + seq_en = seq_st + (lens[i] - 2) + prob = probs[seq_st:seq_en, :] + infers = np.argmax(probs, -1) + out.append(( + inputs[seq_st:seq_en].tolist(), + infers.tolist(), + probs.tolist())) + base_index += max_len * len(lens) + return out + + +def predict(exe, + test_program, + test_pyreader, + graph_vars, + dev_count=1): + fetch_list = [ + graph_vars["inputs"].name, + graph_vars["probs"].name, + graph_vars["seqlen"].name, + graph_vars["probs"].name, + ] + + test_pyreader.start() + res = [] + while True: + try: + inputs, probs, np_lens, np_probs = exe.run(program=test_program, + fetch_list=fetch_list) + r = chunk_predict(inputs, probs, np_lens, dev_count) + res += r + except fluid.core.EOFException: + test_pyreader.reset() + break + log.info(len(res)) + return res - else: - total_label, total_infer, total_correct = 0.0, 0.0, 0.0 - time_begin = time.time() - pyreader.start() - while True: - try: - np_num_infer, np_num_label, np_num_correct = exe.run(program=program, - fetch_list=fetch_list) - total_infer += np.sum(np_num_infer) - total_label += np.sum(np_num_label) - total_correct += np.sum(np_num_correct) - - except fluid.core.EOFException: - pyreader.reset() - break - - precision, recall, f1 = calculate_f1(total_label, total_infer, - total_correct) - time_end = time.time() - - print( - "[%s evaluation] f1: %f, precision: %f, recall: %f, elapsed time: %f s" - % (eval_phase, f1, precision, recall, time_end - time_begin)) diff --git a/finetune_args.py b/finetune_args.py index 98b5968ce3a6de6d1ee94c31b9d66fc9c49e8514..15a20382ea0352c1094dce988f0689b05762472a 100644 --- a/finetune_args.py +++ b/finetune_args.py @@ -11,10 +11,12 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + import os import time @@ -47,10 +49,21 @@ train_g.add_arg("warmup_proportion", float, 0.1, train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") -train_g.add_arg("loss_scaling", float, 1.0, +train_g.add_arg("use_dynamic_loss_scaling", bool, True, "Whether to use dynamic loss scaling.") +train_g.add_arg("init_loss_scaling", float, 102400, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.") -train_g.add_arg("test_save", str, "test_result", "test_save") + +train_g.add_arg("test_save", str, "./checkpoints/test_result", "test_save") train_g.add_arg("metric", str, "simple_accuracy", "metric") +train_g.add_arg("incr_every_n_steps", int, 100, "Increases loss scaling every n consecutive.") +train_g.add_arg("decr_every_n_nan_or_inf", int, 2, + "Decreases loss scaling every n accumulated steps with nan or inf gradients.") +train_g.add_arg("incr_ratio", float, 2.0, + "The multiplier to use when increasing the loss scaling.") +train_g.add_arg("decr_ratio", float, 0.8, + "The less-than-one-multiplier to use when decreasing.") + + log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") @@ -86,6 +99,7 @@ data_g.add_arg("chunk_scheme", type=str, default="IOB", choices=["IO", "IOB", " run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") +run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.") run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg("num_iteration_per_drop_scope", int, 10, "Iteration intervals to drop scope.") run_type_g.add_arg("do_train", bool, True, "Whether to perform training.") diff --git a/model/ernie.py b/model/ernie.py index 95822c5bf42024360101fbaed844241a949da7d1..9ee254d95d9721a226060cbcf162c3136ba39897 100644 --- a/model/ernie.py +++ b/model/ernie.py @@ -16,14 +16,18 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import json - import six +import logging import paddle.fluid as fluid +from io import open from model.transformer_encoder import encoder, pre_process_layer +log = logging.getLogger(__name__) class ErnieConfig(object): def __init__(self, config_path): @@ -31,7 +35,7 @@ class ErnieConfig(object): def _parse(self, config_path): try: - with open(config_path) as json_file: + with open(config_path, 'r', encoding='utf8') as json_file: config_dict = json.load(json_file) except Exception: raise IOError("Error in parsing Ernie model config file '%s'" % @@ -44,8 +48,8 @@ class ErnieConfig(object): def print_config(self): for arg, value in sorted(six.iteritems(self._config_dict)): - print('%s: %s' % (arg, value)) - print('------------------------------------------------') + log.info('%s: %s' % (arg, value)) + log.info('------------------------------------------------') class ErnieModel(object): @@ -102,7 +106,7 @@ class ErnieModel(object): param_attr=fluid.ParamAttr( name=self._word_emb_name, initializer=self._param_initializer), is_sparse=False) - + position_emb_out = fluid.layers.embedding( input=position_ids, size=[self._max_position_seq_len, self._emb_size], @@ -163,6 +167,10 @@ class ErnieModel(object): postprocess_cmd="dan", param_initializer=self._param_initializer, name='encoder') + if self._dtype == "float16": + self._enc_out = fluid.layers.cast( + x=self._enc_out, dtype=self._emb_dtype) + def get_sequence_output(self): return self._enc_out @@ -171,9 +179,6 @@ class ErnieModel(object): """Get the first feature of each sequence for classification""" next_sent_feat = fluid.layers.slice( input=self._enc_out, axes=[1], starts=[0], ends=[1]) - if self._dtype == "float16": - next_sent_feat = fluid.layers.cast( - x=next_sent_feat, dtype=self._emb_dtype) next_sent_feat = fluid.layers.fc( input=next_sent_feat, size=self._emb_size, @@ -194,8 +199,6 @@ class ErnieModel(object): x=self._enc_out, shape=[-1, self._emb_size]) # extract masked tokens' feature mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos) - if self._dtype == "float16": - mask_feat = fluid.layers.cast(x=mask_feat, dtype=self._emb_dtype) # transform: fc mask_trans_feat = fluid.layers.fc( @@ -206,7 +209,7 @@ class ErnieModel(object): name='mask_lm_trans_fc.w_0', initializer=self._param_initializer), bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0')) - + # transform: layer norm mask_trans_feat = fluid.layers.layer_norm( mask_trans_feat, diff --git a/model/ernie_v1.py b/model/ernie_v1.py index f2b5c0faaec150cf619e0b9ff45d103790e2539d..e05dd86eb08dbe365b31187fe9dda53f4567266b 100644 --- a/model/ernie_v1.py +++ b/model/ernie_v1.py @@ -16,14 +16,18 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import json - +import logging import six import paddle.fluid as fluid +from io import open from model.transformer_encoder import encoder, pre_process_layer +log = logging.getLogger(__name__) class ErnieConfig(object): def __init__(self, config_path): @@ -31,7 +35,7 @@ class ErnieConfig(object): def _parse(self, config_path): try: - with open(config_path) as json_file: + with open(config_path, 'r', encoding='utf8') as json_file: config_dict = json.load(json_file) except Exception: raise IOError("Error in parsing Ernie model config file '%s'" % @@ -44,8 +48,8 @@ class ErnieConfig(object): def print_config(self): for arg, value in sorted(six.iteritems(self._config_dict)): - print('%s: %s' % (arg, value)) - print('------------------------------------------------') + log.info('%s: %s' % (arg, value)) + log.info('------------------------------------------------') class ErnieModel(object): diff --git a/optimization.py b/optimization.py index 2205517cc4cae6dd6cb5ce083109c3f61350725b..144cfd4ea1d819b75a5e9882e0923056b6e0f02c 100644 --- a/optimization.py +++ b/optimization.py @@ -16,10 +16,13 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + import numpy as np import paddle.fluid as fluid -from utils.fp16 import create_master_params_grads, master_param_to_train_param +from utils.fp16 import create_master_params_grads, master_param_to_train_param, apply_dynamic_loss_scaling def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): @@ -101,7 +104,7 @@ def optimization(loss, return False param_list = dict() - + loss_scaling = fluid.layers.create_global_var( name=fluid.unique_name.generate("loss_scaling"), shape=[1], diff --git a/pretrain_args.py b/pretrain_args.py index 9d55de503544eb4473efe124479800b09f53d39e..d3f968591d2037e9eef54a7fb05b110f8fb1a983 100644 --- a/pretrain_args.py +++ b/pretrain_args.py @@ -42,8 +42,18 @@ train_g.add_arg("warmup_steps", int, 5000, "Total steps to perform wa train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") -train_g.add_arg("loss_scaling", float, 1.0, +train_g.add_arg("use_dynamic_loss_scaling", bool, True, "Whether to use dynamic loss scaling.") +train_g.add_arg("init_loss_scaling", float, 102400, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.") +train_g.add_arg("incr_every_n_steps", int, 100, "Increases loss scaling every n consecutive.") +train_g.add_arg("decr_every_n_nan_or_inf", int, 2, + "Decreases loss scaling every n accumulated steps with nan or inf gradients.") +train_g.add_arg("incr_ratio", float, 2.0, + "The multiplier to use when increasing the loss scaling.") +train_g.add_arg("decr_ratio", float, 0.8, + "The less-than-one-multiplier to use when decreasing.") + + log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") diff --git a/reader/pretraining.py b/reader/pretraining.py index ced210727d01d287c79037b88f42324b0dbc0c28..c14fdf97b2c28d78eb5c78ee2e796da6c4f73048 100644 --- a/reader/pretraining.py +++ b/reader/pretraining.py @@ -11,9 +11,11 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - -from __future__ import print_function +from __future__ import absolute_import from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os import numpy as np @@ -36,8 +38,10 @@ class ErnieDataReader(object): filelist, vocab_path, batch_size=4096, + in_tokens=True, max_seq_len=512, shuffle_files=True, + random_seed=1, epoch=100, voc_size=0, is_test=False, @@ -46,6 +50,8 @@ class ErnieDataReader(object): self.vocab = self.load_vocab(vocab_path) self.filelist = filelist self.batch_size = batch_size + self.in_tokens = in_tokens + self.random_seed = random_seed self.shuffle_files = shuffle_files self.epoch = epoch self.current_epoch = 0 @@ -60,12 +66,42 @@ class ErnieDataReader(object): self.mask_id = self.vocab["[MASK]"] self.is_test = is_test self.generate_neg_sample = generate_neg_sample - assert self.batch_size > 100, "Current batch size means total token's number, \ - it should not be set to too small number." - + + self.trainer_id = 0 + self.trainer_nums = 1 + self.files = open(filelist).readlines() + self.total_file = len(self.files) + if self.is_test: self.epoch = 1 self.shuffle_files = False + + self.global_rng = np.random.RandomState(random_seed) + if self.shuffle_files: + if os.getenv("PADDLE_TRAINER_ID"): + self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID")) + if os.getenv("PADDLE_NODES_NUM"): + self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM")) + #renew total_file + self.total_file = len(self.files) // self.trainer_nums * self.trainer_nums + if len(self.files) < self.trainer_nums: + raise RuntimeError('not enouph train file to shard, file:%d num_trainer:%d' % (len(self.files), self.trainer_nums)) + + tmp_files = [] + for each in range(epoch): + each_files = self.files + self.global_rng.shuffle(each_files) + tmp_files += each_files + self.files = tmp_files + #renew epochs + self.epoch = len(self.files) // self.total_file * self.total_file + + assert self.total_file > 0, \ + "[Error] data_dir is empty or less than %d" % self.trainer_nums + + if self.in_tokens: + assert self.batch_size > 100, "Current batch size means total token's number, \ + it should not be set to too small number." def get_progress(self): """return current progress of traning data @@ -75,13 +111,16 @@ class ErnieDataReader(object): def parse_line(self, line, max_seq_len=512): """ parse one line to token_ids, sentence_ids, pos_ids, label """ - line = line.strip().decode().split(";") - assert len(line) == 5, "One sample must have 5 fields!" + line = line.strip().split(";") + assert len(line) == 5, \ + "One sample must have %d fields!" % 5 + (token_ids, sent_ids, pos_ids, seg_labels, label) = line token_ids = [int(token) for token in token_ids.split(" ")] sent_ids = [int(token) for token in sent_ids.split(" ")] pos_ids = [int(token) for token in pos_ids.split(" ")] seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")] + assert len(token_ids) == len(sent_ids) == len(pos_ids) == len( seg_labels ), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)" @@ -94,6 +133,7 @@ class ErnieDataReader(object): assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file with gzip.open(file, "rb") as f: for line in f: + line = line.decode('utf8') parsed_line = self.parse_line( line, max_seq_len=self.max_seq_len) if parsed_line is None: @@ -232,35 +272,63 @@ class ErnieDataReader(object): print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" % (num_total_miss, pos_sample_num * 2, num_total_miss / (pos_sample_num * 2))) + + def shuffle_samples(self, sample_generator, buffer=1000): + samples = [] + try: + while True: + while len(samples) < buffer: + sample = next(sample_generator) + samples.append(sample) + np.random.shuffle(samples) + for sample in samples: + yield sample + samples = [] + except StopIteration: + print("stopiteration: reach end of file") + if len(samples) == 0: + yield None + else: + np.random.shuffle(samples) + for sample in samples: + yield sample def data_generator(self): """ data_generator """ - files = open(self.filelist).readlines() - self.total_file = len(files) - assert self.total_file > 0, "[Error] data_dir is empty" - def wrapper(): def reader(): for epoch in range(self.epoch): self.current_epoch = epoch + 1 + files = self.files + #during training, data are sliced by trainers if self.shuffle_files: - np.random.shuffle(files) - for index, file in enumerate(files): - file, mask_word_prob = file.strip().split("\t") + start = epoch * self.total_file + end = start + self.total_file + files = [file_ for index, file_ in enumerate(self.files[start:end]) \ + if index % self.trainer_nums == self.trainer_id] + + for index, file_ in enumerate(files): + file_, mask_word_prob = file_.strip().split("\t") mask_word = (np.random.random() < float(mask_word_prob)) - self.current_file_index = index + 1 - self.current_file = file + self.current_file_index = (index + 1) * self.trainer_nums + self.current_file = file_ if mask_word: self.mask_type = "mask_word" else: self.mask_type = "mask_char" - sample_generator = self.read_file(file) - if not self.is_test and self.generate_neg_sample: - sample_generator = self.mixin_negtive_samples( - sample_generator) + sample_generator = self.read_file(file_) + if not self.is_test: + if self.generate_neg_sample: + sample_generator = self.mixin_negtive_samples( + sample_generator) + else: + #shuffle buffered sample + sample_generator = self.shuffle_samples( + sample_generator) + for sample in sample_generator: if sample is None: continue @@ -272,7 +340,11 @@ class ErnieDataReader(object): for parsed_line in reader(): token_ids, sent_ids, pos_ids, label, seg_labels, mask_word = parsed_line max_len = max(max_len, len(token_ids)) - if (len(batch) + 1) * max_len <= batch_size: + if self.in_tokens: + to_append = (len(batch) + 1) * max_len <= batch_size + else: + to_append = len(batch) < batch_size + if to_append: batch.append(parsed_line) total_token_num += len(token_ids) else: diff --git a/reader/task_reader.py b/reader/task_reader.py index a68522c2f53e937a16da63d5b69878ee16142295..8e33e0725660133b9fbca5781d434d64187b520d 100644 --- a/reader/task_reader.py +++ b/reader/task_reader.py @@ -11,18 +11,46 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import +import sys import os -import csv import json import random +import logging import numpy as np +import six +from io import open from collections import namedtuple import tokenization from batching import pad_batch_data +log = logging.getLogger(__name__) + +if six.PY3: + from itertools import accumulate + import io + sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') + sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') + + +def csv_reader(fd, delimiter='\t'): + def gen(): + for i in fd: + slots = i.rstrip('\n').split(delimiter) + if len(slots) == 1: + yield slots, + else: + yield slots + return gen() + + class BaseReader(object): def __init__(self, vocab_path, @@ -58,7 +86,7 @@ class BaseReader(object): self.num_examples = 0 if label_map_config: - with open(label_map_config) as f: + with open(label_map_config, encoding='utf8') as f: self.label_map = json.load(f) else: self.label_map = None @@ -69,8 +97,8 @@ class BaseReader(object): def _read_tsv(self, input_file, quotechar=None): """Reads a tab separated value file.""" - with open(input_file, "r") as f: - reader = csv.reader(f, delimiter="\t", quotechar=quotechar) + with open(input_file, 'r', encoding='utf8') as f: + reader = csv_reader(f) headers = next(reader) Example = namedtuple('Example', headers) @@ -225,6 +253,12 @@ class BaseReader(object): phase=None): examples = self._read_tsv(input_file) + if phase == 'train': + trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + trainer_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) + examples = examples[trainer_id: (len(examples) //trainer_num) * trainer_num : trainer_num] + log.info('apply sharding %d/%d' % (trainer_id, trainer_num)) + def wrapper(): all_dev_batches = [] for epoch_index in range(epoch): @@ -242,15 +276,21 @@ class BaseReader(object): for batch in all_dev_batches: yield batch all_dev_batches = [] - - return wrapper + def f(): + try: + for i in wrapper(): + yield i + except Exception as e: + import traceback + traceback.print_exc() + return f class ClassifyReader(BaseReader): def _read_tsv(self, input_file, quotechar=None): """Reads a tab separated value file.""" - with open(input_file, "r") as f: - reader = csv.reader(f, delimiter="\t", quotechar=quotechar) + with open(input_file, 'r', encoding='utf8') as f: + reader = csv_reader(f) headers = next(reader) text_indices = [ index for index, h in enumerate(headers) if h != "label" @@ -472,7 +512,7 @@ class MRCReader(BaseReader): def _read_json(self, input_file, is_training): examples = [] - with open(input_file, "r") as f: + with open(input_file, "r", encoding='utf8') as f: input_data = json.load(f)["data"] for entry in input_data: for paragraph in entry["paragraphs"]: @@ -507,7 +547,7 @@ class MRCReader(BaseReader): actual_text = " ".join(doc_tokens[start_pos:(end_pos + 1)]) if actual_text.find(orig_answer_text) == -1: - print("Could not find answer: '%s' vs. '%s'", + log.info("Could not find answer: '%s' vs. '%s'", actual_text, orig_answer_text) continue else: diff --git a/run_classifier.py b/run_classifier.py index a6616bc265901fa55368d7853d68c4fbfadc74c8..c4d019df4dce7a1f6c3e8fa3e5495d80e3f748c2 100644 --- a/run_classifier.py +++ b/run_classifier.py @@ -16,9 +16,12 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os import time +import logging import multiprocessing # NOTE(paddle-dev): All of these flags should be @@ -32,12 +35,13 @@ import reader.task_reader as task_reader from model.ernie import ErnieConfig from finetune.classifier import create_model, evaluate, predict from optimization import optimization -from utils.args import print_arguments, check_cuda +from utils.args import print_arguments, check_cuda, prepare_logger from utils.init import init_pretraining_params, init_checkpoint from utils.cards import get_cards from finetune_args import parser args = parser.parse_args() +log = logging.getLogger() def main(args): @@ -45,8 +49,9 @@ def main(args): ernie_config.print_config() if args.use_cuda: - place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) - dev_count = fluid.core.get_cuda_device_count() + dev_list = fluid.cuda_places() + place = dev_list[0] + dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) @@ -95,10 +100,10 @@ def main(args): max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) - print("Device count: %d" % dev_count) - print("Num train examples: %d" % num_train_examples) - print("Max train steps: %d" % max_train_steps) - print("Num warmup steps: %d" % warmup_steps) + log.info("Device count: %d" % dev_count) + log.info("Num train examples: %d" % num_train_examples) + log.info("Max train steps: %d" % max_train_steps) + log.info("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() if args.random_seed is not None and args.enable_ce: @@ -121,7 +126,13 @@ def main(args): startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, - use_fp16=args.use_fp16) + use_fp16=args.use_fp16, + use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, + init_loss_scaling=args.init_loss_scaling, + incr_every_n_steps=args.incr_every_n_steps, + decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, + incr_ratio=args.incr_ratio, + decr_ratio=args.decr_ratio) if args.verbose: if args.in_tokens: @@ -131,7 +142,7 @@ def main(args): else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) - print("Theoretical memory usage in training: %.3f - %.3f %s" % + log.info("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: @@ -148,11 +159,36 @@ def main(args): test_prog = test_prog.clone(for_test=True) nccl2_num_trainers = 1 nccl2_trainer_id = 0 + if args.is_distributed: + trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") + current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") + worker_endpoints = worker_endpoints_env.split(",") + trainers_num = len(worker_endpoints) + + log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ + trainer_id:{}".format(worker_endpoints, trainers_num, + current_endpoint, trainer_id)) + + # prepare nccl2 env. + config = fluid.DistributeTranspilerConfig() + config.mode = "nccl2" + t = fluid.DistributeTranspiler(config=config) + t.transpile( + trainer_id, + trainers=worker_endpoints_env, + current_endpoint=current_endpoint, + program=train_program if args.do_train else test_prog, + startup_program=startup_prog) + nccl2_num_trainers = trainers_num + nccl2_trainer_id = trainer_id + + exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: - print( + log.warning( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: @@ -236,14 +272,14 @@ def main(args): verbose += "learning rate: %f" % ( outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate) - print(verbose) + log.info(verbose) current_example, current_epoch = reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin if args.is_classify: - print( + log.info( "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " "ave acc: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, @@ -252,7 +288,7 @@ def main(args): ce_info.append( [outputs["loss"], outputs["accuracy"], used_time]) if args.is_regression: - print( + log.info( "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " " speed: %f steps/s" % (current_epoch, current_example, num_train_examples, @@ -260,22 +296,23 @@ def main(args): args.skip_steps / used_time)) time_begin = time.time() - if steps % args.save_steps == 0: - save_path = os.path.join(args.checkpoints, - "step_" + str(steps)) - fluid.io.save_persistables(exe, save_path, train_program) + if nccl2_trainer_id == 0: + if steps % args.save_steps == 0: + save_path = os.path.join(args.checkpoints, + "step_" + str(steps)) + fluid.io.save_persistables(exe, save_path, train_program) - if steps % args.validation_steps == 0 or last_epoch != current_epoch: - # evaluate dev set - if args.do_val: - evaluate_wrapper(args, reader, exe, test_prog, - test_pyreader, graph_vars, - current_epoch, steps) + if steps % args.validation_steps == 0 or last_epoch != current_epoch: + # evaluate dev set + if args.do_val: + evaluate_wrapper(args, reader, exe, test_prog, + test_pyreader, graph_vars, + current_epoch, steps) - if args.do_test: - predict_wrapper(args, reader, exe, test_prog, - test_pyreader, graph_vars, - current_epoch, steps) + if args.do_test: + predict_wrapper(args, reader, exe, test_prog, + test_pyreader, graph_vars, + current_epoch, steps) if last_epoch != current_epoch: last_epoch = current_epoch @@ -295,10 +332,10 @@ def main(args): ce_acc = ce_info[-2][1] ce_time = ce_info[-2][2] except: - print("ce info error") - print("kpis\ttrain_duration_card%s\t%s" % (card_num, ce_time)) - print("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss)) - print("kpis\ttrain_acc_card%s\t%f" % (card_num, ce_acc)) + log.info("ce info error") + log.info("kpis\ttrain_duration_card%s\t%s" % (card_num, ce_time)) + log.info("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss)) + log.info("kpis\ttrain_acc_card%s\t%f" % (card_num, ce_acc)) # final eval on dev set if args.do_val: @@ -320,7 +357,7 @@ def main(args): dev_count=1, shuffle=False)) - print("Final diagnostic") + log.info("Final diagnostic") qids, preds, probs = predict( test_exe, test_prog, @@ -334,7 +371,7 @@ def main(args): for id, s, p in zip(qids, preds, probs): f.write('{}\t{}\t{}\n'.format(id, s, p)) - print("Done final diagnostic, saving to {}".format( + log.info("Done final diagnostic, saving to {}".format( args.diagnostic_save)) @@ -349,7 +386,7 @@ def evaluate_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars, epoch=1, dev_count=1, shuffle=False)) - print("validation result of dataset {}:".format(ds)) + log.info("validation result of dataset {}:".format(ds)) evaluate_info = evaluate( exe, test_prog, @@ -359,7 +396,7 @@ def evaluate_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars, metric=args.metric, is_classify=args.is_classify, is_regression=args.is_regression) - print(evaluate_info + ', file: {}, epoch: {}, steps: {}'.format( + log.info(evaluate_info + ', file: {}, epoch: {}, steps: {}'.format( ds, epoch, steps)) @@ -379,7 +416,7 @@ def predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars, shuffle=False)) save_path = save_f + '.' + str(epoch) + '.' + str(steps) - print("testing {}, save to {}".format(test_f, save_path)) + log.info("testing {}, save to {}".format(test_f, save_path)) qids, preds, probs = predict( exe, test_prog, @@ -391,6 +428,9 @@ def predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars, save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) + else: + log.warning('save dir exsits: %s, will skip saving' % save_dir) + with open(save_path, 'w') as f: for id, s, p in zip(qids, preds, probs): @@ -398,6 +438,7 @@ def predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars, if __name__ == '__main__': + prepare_logger(log) print_arguments(args) check_cuda(args.use_cuda) main(args) diff --git a/run_mrc.py b/run_mrc.py index 360b9bc7f12b2603c844c6b84c477513081eab5d..487b6ba60c1213631d438e77ba1b8bff76bfb86b 100644 --- a/run_mrc.py +++ b/run_mrc.py @@ -16,9 +16,11 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals import os import time +import logging import multiprocessing # NOTE(paddle-dev): All of these flags should be @@ -32,11 +34,12 @@ import reader.task_reader as task_reader from model.ernie import ErnieConfig from finetune.mrc import create_model, evaluate from optimization import optimization -from utils.args import print_arguments +from utils.args import print_arguments, prepare_logger from utils.init import init_pretraining_params, init_checkpoint from finetune_args import parser args = parser.parse_args() +log = logging.getLogger() def main(args): @@ -44,8 +47,9 @@ def main(args): ernie_config.print_config() if args.use_cuda: - place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) - dev_count = fluid.core.get_cuda_device_count() + dev_list = fluid.cuda_places() + place = dev_list[0] + dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) @@ -70,6 +74,8 @@ def main(args): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") + if args.do_test: + assert args.test_save is not None startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed @@ -77,11 +83,12 @@ def main(args): if args.predict_batch_size == None: args.predict_batch_size = args.batch_size if args.do_train: + trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) train_data_generator = reader.data_generator( input_file=args.train_set, batch_size=args.batch_size, epoch=args.epoch, - dev_count=dev_count, + dev_count=trainers_num, shuffle=True, phase="train") @@ -94,10 +101,10 @@ def main(args): max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) - print("Device count: %d" % dev_count) - print("Num train examples: %d" % num_train_examples) - print("Max train steps: %d" % max_train_steps) - print("Num warmup steps: %d" % warmup_steps) + log.info("Device count: %d" % dev_count) + log.info("Num train examples: %d" % num_train_examples) + log.info("Max train steps: %d" % max_train_steps) + log.info("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() @@ -108,7 +115,7 @@ def main(args): pyreader_name='train_reader', ernie_config=ernie_config, is_training=True) - scheduled_lr, loss_scaling = optimization( + scheduled_lr, _ = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, @@ -117,7 +124,13 @@ def main(args): startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, - use_fp16=args.use_fp16) + use_fp16=args.use_fp16, + use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, + init_loss_scaling=args.init_loss_scaling, + incr_every_n_steps=args.incr_every_n_steps, + decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, + incr_ratio=args.incr_ratio, + decr_ratio=args.decr_ratio) if args.verbose: if args.in_tokens: @@ -127,7 +140,7 @@ def main(args): else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) - print("Theoretical memory usage in training: %.3f - %.3f %s" % + log.info("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: @@ -144,11 +157,36 @@ def main(args): nccl2_num_trainers = 1 nccl2_trainer_id = 0 + if args.is_distributed: + trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") + current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") + worker_endpoints = worker_endpoints_env.split(",") + trainers_num = len(worker_endpoints) + + log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ + trainer_id:{}".format(worker_endpoints, trainers_num, + current_endpoint, trainer_id)) + + # prepare nccl2 env. + config = fluid.DistributeTranspilerConfig() + config.mode = "nccl2" + t = fluid.DistributeTranspiler(config=config) + t.transpile( + trainer_id, + trainers=worker_endpoints_env, + current_endpoint=current_endpoint, + program=train_program if args.do_train else test_prog, + startup_program=startup_prog) + nccl2_num_trainers = trainers_num + nccl2_trainer_id = trainer_id + + exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: - print( + log.warning( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: @@ -214,12 +252,12 @@ def main(args): verbose += "learning rate: %f" % ( outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate) - print(verbose) + log.info(verbose) current_example, current_epoch = reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin - print("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " + log.info("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " "speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, outputs["loss"], args.skip_steps / used_time)) @@ -277,7 +315,7 @@ def main(args): # final eval on dev set if args.do_val: - print("Final validation result:") + log.info("Final validation result:") test_pyreader.decorate_tensor_provider( reader.data_generator( args.dev_set, @@ -298,7 +336,7 @@ def main(args): # final eval on test set if args.do_test: - print("Final test result:") + log.info("Final test result:") test_pyreader.decorate_tensor_provider( reader.data_generator( args.test_set, @@ -319,6 +357,8 @@ def main(args): if __name__ == '__main__': + prepare_logger(log) + print_arguments(args) while True: scope = fluid.core.Scope() with fluid.scope_guard(scope): diff --git a/run_sequence_labeling.py b/run_sequence_labeling.py index 73d5296bf810a30f5bb047fdf109d630d1d3f0e2..756f6ab67b21ca6b577bb9dab15105e2accdce18 100644 --- a/run_sequence_labeling.py +++ b/run_sequence_labeling.py @@ -16,10 +16,15 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os import time +import six +import logging import multiprocessing +from io import open # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would @@ -32,11 +37,12 @@ import reader.task_reader as task_reader from model.ernie import ErnieConfig from optimization import optimization from utils.init import init_pretraining_params, init_checkpoint -from utils.args import print_arguments, check_cuda -from finetune.sequence_label import create_model, evaluate +from utils.args import print_arguments, check_cuda, prepare_logger +from finetune.sequence_label import create_model, evaluate, predict, calculate_f1 from finetune_args import parser args = parser.parse_args() +log = logging.getLogger() def main(args): @@ -44,12 +50,12 @@ def main(args): ernie_config.print_config() if args.use_cuda: - place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) - dev_count = fluid.core.get_cuda_device_count() + dev_list = fluid.cuda_places() + place = dev_list[0] + dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) - exe = fluid.Executor(place) reader = task_reader.SequenceLabelReader( vocab_path=args.vocab_path, @@ -85,10 +91,10 @@ def main(args): max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) - print("Device count: %d" % dev_count) - print("Num train examples: %d" % num_train_examples) - print("Max train steps: %d" % max_train_steps) - print("Num warmup steps: %d" % warmup_steps) + log.info("Device count: %d" % dev_count) + log.info("Num train examples: %d" % num_train_examples) + log.info("Max train steps: %d" % max_train_steps) + log.info("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() @@ -107,7 +113,13 @@ def main(args): startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, - use_fp16=args.use_fp16) + use_fp16=args.use_fp16, + use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, + init_loss_scaling=args.init_loss_scaling, + incr_every_n_steps=args.incr_every_n_steps, + decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, + incr_ratio=args.incr_ratio, + decr_ratio=args.decr_ratio) if args.verbose: if args.in_tokens: @@ -117,7 +129,7 @@ def main(args): else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) - print("Theoretical memory usage in training: %.3f - %.3f %s" % + log.info("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: @@ -131,11 +143,38 @@ def main(args): test_prog = test_prog.clone(for_test=True) + nccl2_num_trainers = 1 + nccl2_trainer_id = 0 + if args.is_distributed: + trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) + worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") + current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") + worker_endpoints = worker_endpoints_env.split(",") + trainers_num = len(worker_endpoints) + + log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ + trainer_id:{}".format(worker_endpoints, trainers_num, + current_endpoint, trainer_id)) + + # prepare nccl2 env. + config = fluid.DistributeTranspilerConfig() + config.mode = "nccl2" + t = fluid.DistributeTranspiler(config=config) + t.transpile( + trainer_id, + trainers=worker_endpoints_env, + current_endpoint=current_endpoint, + program=train_program if args.do_train else test_prog, + startup_program=startup_prog) + nccl2_num_trainers = trainers_num + nccl2_trainer_id = trainer_id + + exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: - print( + log.info( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: @@ -171,7 +210,9 @@ def main(args): use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, exec_strategy=exec_strategy, - main_program=train_program) + main_program=train_program, + num_trainers=nccl2_num_trainers, + trainer_id=nccl2_trainer_id) train_pyreader.decorate_tensor_provider(train_data_generator) else: @@ -186,8 +227,7 @@ def main(args): if args.do_train: train_pyreader.start() steps = 0 - if warmup_steps > 0: - graph_vars["learning_rate"] = scheduled_lr + graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() while True: @@ -196,54 +236,47 @@ def main(args): if steps % args.skip_steps != 0: train_exe.run(fetch_list=[]) else: - outputs = evaluate(train_exe, train_program, train_pyreader, - graph_vars, args.num_labels, "train", - dev_count) + fetch_list = [ + graph_vars["num_infer"].name, graph_vars["num_label"].name, + graph_vars["num_correct"].name, + graph_vars["loss"].name, + graph_vars['learning_rate'].name, + ] + + out = train_exe.run(fetch_list=fetch_list) + num_infer, num_label, num_correct, np_loss, np_lr = out + lr = float(np_lr[0]) + loss = np_loss.mean() + precision, recall, f1 = calculate_f1(num_label, num_infer, num_correct) if args.verbose: - verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size( - ) - verbose += "learning rate: %f" % ( - outputs["lr"] - if warmup_steps > 0 else args.learning_rate) - print(verbose) + log.info("train pyreader queue size: %d, learning rate: %f" % (train_pyreader.queue.size(), + lr if warmup_steps > 0 else args.learning_rate)) current_example, current_epoch = reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin - print("epoch: %d, progress: %d/%d, step: %d, loss: %f, " + log.info("epoch: %d, progress: %d/%d, step: %d, loss: %f, " "f1: %f, precision: %f, recall: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, - steps, outputs["loss"], outputs["f1"], - outputs["precision"], outputs["recall"], + steps, loss, f1, precision, recall, args.skip_steps / used_time)) time_begin = time.time() - if steps % args.save_steps == 0: + if nccl2_trainer_id == 0 and steps % args.save_steps == 0: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) - if steps % args.validation_steps == 0: + if nccl2_trainer_id == 0 and steps % args.validation_steps == 0: # evaluate dev set if args.do_val: - test_pyreader.decorate_tensor_provider( - reader.data_generator( - args.dev_set, - batch_size=args.batch_size, - epoch=1, - shuffle=False)) - evaluate(exe, test_prog, test_pyreader, graph_vars, - args.num_labels, "dev") + evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + current_epoch, steps) # evaluate test set if args.do_test: - test_pyreader.decorate_tensor_provider( - reader.data_generator( - args.test_set, - batch_size=args.batch_size, - epoch=1, - shuffle=False)) - evaluate(exe, test_prog, test_pyreader, graph_vars, - args.num_labels, "test") + predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + current_epoch, steps) + except fluid.core.EOFException: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) @@ -252,31 +285,65 @@ def main(args): break # final eval on dev set - if args.do_val: - test_pyreader.decorate_tensor_provider( - reader.data_generator( - args.dev_set, - batch_size=args.batch_size, - epoch=1, - shuffle=False)) - print("Final validation result:") - evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels, - "dev") + if nccl2_trainer_id ==0 and args.do_val: + evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + current_epoch, 'final') - # final eval on test set - if args.do_test: + if nccl2_trainer_id == 0 and args.do_test: + predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + current_epoch, 'final') + + +def evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + epoch, steps): + # evaluate dev set + for ds in args.dev_set.split(','): #single card eval test_pyreader.decorate_tensor_provider( reader.data_generator( - args.test_set, - batch_size=args.batch_size, + ds, + batch_size=args.predict_batch_size, epoch=1, + dev_count=1, shuffle=False)) - print("Final test result:") - evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels, - "test") - + log.info("validation result of dataset {}:".format(ds)) + info = evaluate(exe, test_prog, test_pyreader, graph_vars, + args.num_labels) + log.info(info + ', file: {}, epoch: {}, steps: {}'.format( + ds, epoch, steps)) + + +def predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, + epoch, steps): + test_sets = args.test_set.split(',') + save_dirs = args.test_save.split(',') + assert len(test_sets) == len(save_dirs), 'number of test_sets & test_save not match, got %d vs %d' % (len(test_sets), len(save_dirs)) + + for test_f, save_f in zip(test_sets, save_dirs): + test_pyreader.decorate_tensor_provider(reader.data_generator( + test_f, + batch_size=args.predict_batch_size, + epoch=1, + dev_count=1, + shuffle=False)) + + save_path = save_f + '.' + str(epoch) + '.' + str(steps) + log.info("testing {}, save to {}".format(test_f, save_path)) + res = predict(exe, test_prog, test_pyreader, graph_vars, dev_count=1) + save_dir = os.path.dirname(save_path) + if not os.path.exists(save_dir): + os.makedirs(save_dir) + + tokenizer = reader.tokenizer + rev_label_map = {v: k for k, v in six.iteritems(reader.label_map)} + with open(save_path, 'w', encoding='utf8') as f: + for id, s, p in res: + id = ' '.join(tokenizer.convert_ids_to_tokens(id)) + p = ' '.join(['%.5f' % pp[ss] for ss, pp in zip(s, p)]) + s = ' '.join([rev_label_map[ss]for ss in s]) + f.write('{}\t{}\t{}\n'.format(id, s, p)) if __name__ == '__main__': + prepare_logger(log) print_arguments(args) check_cuda(args.use_cuda) main(args) diff --git a/script/zh_task/ernie_base/run_cmrc2018.sh b/script/zh_task/ernie_base/run_cmrc2018.sh index 39604d21464223bd76e5578926da82d7df2ef1d0..b9614a328e5fcfe23bf6139f37e57d468e528648 100644 --- a/script/zh_task/ernie_base/run_cmrc2018.sh +++ b/script/zh_task/ernie_base/run_cmrc2018.sh @@ -4,7 +4,12 @@ export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -u run_mrc.py --use_cuda true\ +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_mrc.py --use_cuda true\ --batch_size 16 \ --in_tokens false\ --use_fast_executor true \ diff --git a/script/zh_task/ernie_base/run_dbqa.sh b/script/zh_task/ernie_base/run_dbqa.sh index e5f1cbbb1221382d28c7e6c4a2b028f493bb585b..7b4a03a4fdfd9fba0395e2403c5e227f159ed76d 100644 --- a/script/zh_task/ernie_base/run_dbqa.sh +++ b/script/zh_task/ernie_base/run_dbqa.sh @@ -4,7 +4,13 @@ export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_classifier.py \ + +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_classifier.py \ --use_cuda true \ --verbose true \ --do_train true \ diff --git a/script/zh_task/ernie_base/run_drcd.sh b/script/zh_task/ernie_base/run_drcd.sh index 12cc75d466a6fa193ed80fdee77f58bcdf418ca2..372f8b20b4b79ead19ca69003942acc8bee8a475 100644 --- a/script/zh_task/ernie_base/run_drcd.sh +++ b/script/zh_task/ernie_base/run_drcd.sh @@ -4,7 +4,12 @@ export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -u run_mrc.py --use_cuda true\ +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_mrc.py --use_cuda true\ --batch_size 16 \ --in_tokens false\ --use_fast_executor true \ diff --git a/script/zh_task/ernie_base/run_msra_ner.sh b/script/zh_task/ernie_base/run_msra_ner.sh index 9a25a5aaa1b16ce89057cfff964e443413fd4f32..d20ae017e46971c667400263c97128860723c43d 100644 --- a/script/zh_task/ernie_base/run_msra_ner.sh +++ b/script/zh_task/ernie_base/run_msra_ner.sh @@ -2,7 +2,7 @@ set -eux export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 -export CUDA_VISIBLE_DEVICES=0 +export CUDA_VISIBLDE_DEVICES=0 python -u run_sequence_labeling.py \ --use_cuda true \ @@ -15,7 +15,7 @@ python -u run_sequence_labeling.py \ --chunk_scheme "IOB" \ --label_map_config ${TASK_DATA_PATH}/msra_ner/label_map.json \ --train_set ${TASK_DATA_PATH}/msra_ner/train.tsv \ - --dev_set ${TASK_DATA_PATH}/msra_ner/dev.tsv \ + --dev_set ${TASK_DATA_PATH}/msra_ner/dev.tsv,${TASK_DATA_PATH}/msra_ner/test.tsv \ --test_set ${TASK_DATA_PATH}/msra_ner/test.tsv \ --vocab_path ${MODEL_PATH}/vocab.txt \ --ernie_config_path ${MODEL_PATH}/ernie_config.json \ @@ -24,6 +24,7 @@ python -u run_sequence_labeling.py \ --weight_decay 0.01 \ --warmup_proportion 0.0 \ --validation_steps 100 \ + --use_fp16 false \ --epoch 6 \ --max_seq_len 256 \ --learning_rate 5e-5 \ diff --git a/script/zh_task/ernie_base/run_xnli.sh b/script/zh_task/ernie_base/run_xnli.sh index 4a58b9dcaa9345f8de7447b7b3432902195b3b98..4eac18d445456dcbb3c13acd66e730f09d277493 100644 --- a/script/zh_task/ernie_base/run_xnli.sh +++ b/script/zh_task/ernie_base/run_xnli.sh @@ -4,29 +4,36 @@ export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_classifier.py \ - --use_cuda true \ - --do_train true \ - --do_val true \ - --do_test false \ - --verbose true \ - --batch_size 8192 \ - --in_tokens true \ - --init_pretraining_params ${MODEL_PATH}/params \ - --train_set ${TASK_DATA_PATH}/xnli/train.tsv \ - --dev_set ${TASK_DATA_PATH}/xnli/dev.tsv,${TASK_DATA_PATH}/xnli/test.tsv \ - --vocab_path ${MODEL_PATH}/vocab.txt \ - --label_map ${TASK_DATA_PATH}/xnli/label_map.json \ - --ernie_config_path ${MODEL_PATH}/ernie_config.json \ - --checkpoints ./checkpoints \ - --save_steps 1000 \ - --weight_decay 0.01 \ - --warmup_proportion 0.0 \ - --validation_steps 25 \ - --epoch 3 \ - --max_seq_len 512 \ - --learning_rate 1e-4 \ - --skip_steps 10 \ - --num_iteration_per_drop_scope 1 \ - --num_labels 3 \ - --random_seed 1 +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_classifier.py \ + --use_cuda true \ + --do_train true \ + --do_val true \ + --do_test false \ + --verbose true \ + --in_tokens true \ + --batch_size 8192 \ + --train_set ${TASK_DATA_PATH}/xnli/train.tsv \ + --dev_set ${TASK_DATA_PATH}/xnli/dev.tsv,${TASK_DATA_PATH}/xnli/test.tsv \ + --label_map ${TASK_DATA_PATH}/xnli/label_map.json \ + --vocab_path ${MODEL_PATH}/vocab.txt \ + --ernie_config_path ${MODEL_PATH}/ernie_config.json \ + --init_pretraining_params ${MODEL_PATH}/params \ + --checkpoints ./checkpoints \ + --save_steps 1000 \ + --weight_decay 0.01 \ + --warmup_proportion 0.0 \ + --use_fp16 false \ + --validation_steps 100 \ + --epoch 3 \ + --max_seq_len 512 \ + --learning_rate 1e-4 \ + --skip_steps 10 \ + --num_iteration_per_drop_scope 1 \ + --num_labels 3 \ + --random_seed 1 + diff --git a/script/zh_task/ernie_large/run_cmrc2018.sh b/script/zh_task/ernie_large/run_cmrc2018.sh index c3f65452fdeb61536ca5ba68b5c7642fc1026d08..673db263118dbecccd3a3a0732443497b45d90ab 100644 --- a/script/zh_task/ernie_large/run_cmrc2018.sh +++ b/script/zh_task/ernie_large/run_cmrc2018.sh @@ -4,7 +4,12 @@ export FLAGS_eager_delete_tensor_gb=0.0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_mrc.py --use_cuda true\ +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_mrc.py --use_cuda true\ --batch_size 8 \ --in_tokens false\ --use_fast_executor true \ diff --git a/script/zh_task/ernie_large/run_dbqa.sh b/script/zh_task/ernie_large/run_dbqa.sh index c7abf11ca285c5a0b06fbdce39a3c8dc6ffc0389..079a48c93ad702cc30fbfdfa8844d9a9b5fe0acc 100644 --- a/script/zh_task/ernie_large/run_dbqa.sh +++ b/script/zh_task/ernie_large/run_dbqa.sh @@ -3,7 +3,12 @@ set -eux export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_classifier.py \ +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_classifier.py \ --use_cuda true \ --verbose true \ --do_train true \ diff --git a/script/zh_task/ernie_large/run_drcd.sh b/script/zh_task/ernie_large/run_drcd.sh index c76bfc6adfb6b0bd5672b744c655ad4ae5223feb..f2cfd75011fc04118ac03066f36de8f7d7937daa 100644 --- a/script/zh_task/ernie_large/run_drcd.sh +++ b/script/zh_task/ernie_large/run_drcd.sh @@ -4,7 +4,12 @@ export FLAGS_eager_delete_tensor_gb=0.0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_mrc.py --use_cuda true\ +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_mrc.py --use_cuda true\ --batch_size 8 \ --in_tokens false\ --use_fast_executor true \ diff --git a/script/zh_task/ernie_large/run_msra_ner.sh b/script/zh_task/ernie_large/run_msra_ner.sh index 2a2ff2487ad5d45cc491c662760209ea1114001a..cc9e26602bce97f4a1408c172565eab52217d937 100644 --- a/script/zh_task/ernie_large/run_msra_ner.sh +++ b/script/zh_task/ernie_large/run_msra_ner.sh @@ -14,15 +14,16 @@ python -u run_sequence_labeling.py \ --chunk_scheme "IOB" \ --label_map_config ${TASK_DATA_PATH}/msra_ner/label_map.json \ --train_set ${TASK_DATA_PATH}/msra_ner/train.tsv \ - --dev_set ${TASK_DATA_PATH}/msra_ner/dev.tsv \ + --dev_set ${TASK_DATA_PATH}/msra_ner/dev.tsv,${TASK_DATA_PATH}/msra_ner/test.tsv \ --test_set ${TASK_DATA_PATH}/msra_ner/test.tsv \ - --vocab_path config/vocab.txt \ - --ernie_config_path config/ernie_config.json \ + --vocab_path ${MODEL_PATH}/vocab.txt \ + --ernie_config_path ${MODEL_PATH}/ernie_config.json \ --checkpoints ./checkpoints \ --save_steps 100000 \ --weight_decay 0.01 \ --warmup_proportion 0.0 \ --validation_steps 100 \ + --use_fp16 false \ --epoch 6 \ --max_seq_len 256 \ --learning_rate 1e-5 \ diff --git a/script/zh_task/ernie_large/run_xnli.sh b/script/zh_task/ernie_large/run_xnli.sh index 6070fcf564489b730c3a3b56450da5b9376be75e..a499a31a2ac2fe3a53d365a1c0f4580f85544dbd 100644 --- a/script/zh_task/ernie_large/run_xnli.sh +++ b/script/zh_task/ernie_large/run_xnli.sh @@ -3,7 +3,13 @@ set -eux export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -python -u run_classifier.py \ + +python ./finetune_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +run_classifier.py \ --use_cuda true \ --do_train true \ --do_val true \ diff --git a/script/zh_task/pretrain.sh b/script/zh_task/pretrain.sh index c0e3fc613bb497be1e96b75df60c69a063012d0f..677414532967e42175858dddedb45de11335e740 100644 --- a/script/zh_task/pretrain.sh +++ b/script/zh_task/pretrain.sh @@ -3,8 +3,12 @@ set -eux export FLAGS_eager_delete_tensor_gb=0 export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 - -python -u ./train.py --use_cuda True \ +python ./pretrain_launch.py \ + --nproc_per_node 8 \ + --selected_gpus 0,1,2,3,4,5,6,7 \ + --node_ips $(hostname -i) \ + --node_id 0 \ +./train.py --use_cuda True \ --is_distributed False\ --use_fast_executor True \ --weight_sharing True \ @@ -19,6 +23,7 @@ python -u ./train.py --use_cuda True \ --save_steps 10000 \ --ernie_config_path ./config/ernie_config.json \ --learning_rate 1e-4 \ + --use_fp16 false \ --weight_decay 0.01 \ --max_seq_len 512 \ --skip_steps 10 diff --git a/tokenization.py b/tokenization.py index 132fcdef81d18a477f24f77ac47c090dd5f1ae9f..8d9c1d83cc2f7654abf9871c360e2caf03ce488c 100644 --- a/tokenization.py +++ b/tokenization.py @@ -17,6 +17,10 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + +from io import open import collections import unicodedata @@ -69,15 +73,15 @@ def printable_text(text): def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() - fin = open(vocab_file) - for num, line in enumerate(fin): - items = convert_to_unicode(line.strip()).split("\t") - if len(items) > 2: - break - token = items[0] - index = items[1] if len(items) == 2 else num - token = token.strip() - vocab[token] = int(index) + with open(vocab_file, encoding='utf8') as fin: + for num, line in enumerate(fin): + items = convert_to_unicode(line.strip()).split("\t") + if len(items) > 2: + break + token = items[0] + index = items[1] if len(items) == 2 else num + token = token.strip() + vocab[token] = int(index) return vocab diff --git a/train.py b/train.py index 8c84791d9a2961c9e810c4b3dc68359f8df195d1..f0de622a156ed5ca4177a7e1ff3e5002caeb0883 100644 --- a/train.py +++ b/train.py @@ -12,14 +12,16 @@ # See the License for the specific language governing permissions and # limitations under the License. """ERNIE pretraining.""" - from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os import time import multiprocessing +import logging import numpy as np import paddle.fluid as fluid @@ -27,11 +29,12 @@ import paddle.fluid as fluid from reader.pretraining import ErnieDataReader from model.ernie_v1 import ErnieModel, ErnieConfig from optimization import optimization -from utils.args import print_arguments, check_cuda +from utils.args import print_arguments, check_cuda, prepare_logger from utils.init import init_checkpoint, init_pretraining_params from pretrain_args import parser +log = logging.getLogger() args = parser.parse_args() # yapf: enable. @@ -65,9 +68,6 @@ def create_model(pyreader_name, ernie_config): next_sent_acc, mask_lm_loss, total_loss = ernie.get_pretraining_output( mask_label, mask_pos, labels) - if args.use_fp16 and args.loss_scaling > 1.0: - total_loss *= args.loss_scaling - return pyreader, next_sent_acc, mask_lm_loss, total_loss @@ -114,7 +114,7 @@ def predict_wrapper(args, cost += each_total_cost steps += 1 if args.do_test and steps % args.skip_steps == 0: - print("[test_set] steps: %d" % steps) + log.info("[test_set] steps: %d" % steps) except fluid.core.EOFException: pyreader.reset() @@ -151,9 +151,9 @@ def test(args): pyreader=test_pyreader, fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name]) - print("test begin") + log.info("test begin") loss, lm_loss, acc, steps, speed = predict() - print( + log.info( "[test_set] loss: %f, global ppl: %f, next_sent_acc: %f, speed: %f steps/s" % (np.mean(np.array(loss) / steps), np.exp(np.mean(np.array(lm_loss) / steps)), @@ -161,7 +161,7 @@ def test(args): def train(args): - print("pretraining start") + log.info("pretraining start") ernie_config = ErnieConfig(args.ernie_config_path) ernie_config.print_config() @@ -171,7 +171,7 @@ def train(args): with fluid.unique_name.guard(): train_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model( pyreader_name='train_reader', ernie_config=ernie_config) - scheduled_lr, loss_scaling = optimization( + scheduled_lr, _ = optimization( loss=total_loss, warmup_steps=args.warmup_steps, num_train_steps=args.num_train_steps, @@ -180,7 +180,14 @@ def train(args): startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, - use_fp16=args.use_fp16) + use_fp16=args.use_fp16, + use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, + init_loss_scaling=args.init_loss_scaling, + incr_every_n_steps=args.incr_every_n_steps, + decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, + incr_ratio=args.incr_ratio, + decr_ratio=args.decr_ratio) + fluid.memory_optimize( input_program=train_program, @@ -196,31 +203,34 @@ def train(args): test_prog = test_prog.clone(for_test=True) + if len(fluid.cuda_places()) == 0: + raise RuntimeError('not cuda device cound, check ur env setting') + if args.use_cuda: - place = fluid.CUDAPlace(0) + place = fluid.cuda_places()[0] dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) - print("Device count %d" % dev_count) - print("theoretical memory usage: ") - print(fluid.contrib.memory_usage( + log.info("Device count %d" % dev_count) + log.info("theoretical memory usage: ") + log.info(fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len)) nccl2_num_trainers = 1 nccl2_trainer_id = 0 - print("args.is_distributed:", args.is_distributed) + log.info("args.is_distributed: %s" % args.is_distributed) if args.is_distributed: - worker_endpoints_env = os.getenv("worker_endpoints") + worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) - current_endpoint = os.getenv("current_endpoint") + current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") trainer_id = worker_endpoints.index(current_endpoint) if trainer_id == 0: - print("train_id == 0, sleep 60s") + log.info("train_id == 0, sleep 60s") time.sleep(60) - print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ + log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) @@ -309,13 +319,13 @@ def train(args): lm_cost.extend(each_mask_lm_cost) cost.extend(each_total_cost) - print("feed_queue size", train_pyreader.queue.size()) + log.info("feed_queue size %d" % train_pyreader.queue.size()) time_end = time.time() used_time = time_end - time_begin epoch, current_file_index, total_file, current_file, mask_type = data_reader.get_progress( ) - print("current learning_rate:%f" % np_lr[0]) - print( + log.info("current learning_rate:%f" % np_lr[0]) + log.info( "epoch: %d, progress: %d/%d, step: %d, loss: %f, " "ppl: %f, next_sent_acc: %f, speed: %f steps/s, file: %s, mask_type: %s" % (epoch, current_file_index, total_file, steps, @@ -335,7 +345,7 @@ def train(args): if args.valid_filelist and steps % args.validation_steps == 0: vali_cost, vali_lm_cost, vali_acc, vali_steps, vali_speed = predict( ) - print("[validation_set] epoch: %d, step: %d, " + log.info("[validation_set] epoch: %d, step: %d, " "loss: %f, global ppl: %f, batch-averged ppl: %f, " "next_sent_acc: %f, speed: %f steps/s" % (epoch, steps, np.mean(np.array(vali_cost) / vali_steps), @@ -349,6 +359,7 @@ def train(args): if __name__ == '__main__': + prepare_logger(log) print_arguments(args) check_cuda(args.use_cuda) if args.do_test: diff --git a/utils/args.py b/utils/args.py index ebfb76724243cb40a1ef5ec404ad99a016a19faf..21239caddb3bf4019f137f386e61c439368be945 100644 --- a/utils/args.py +++ b/utils/args.py @@ -12,17 +12,35 @@ # See the License for the specific language governing permissions and # limitations under the License. """Arguments for configuration.""" - from __future__ import absolute_import from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + import six import argparse +import logging import paddle.fluid as fluid +log = logging.getLogger(__name__) + +def prepare_logger(logger, debug=False, save_to_file=None): + formatter = logging.Formatter(fmt='[%(levelname)s] %(asctime)s [%(filename)12s:%(lineno)5d]:\t%(message)s') + console_hdl = logging.StreamHandler() + console_hdl.setFormatter(formatter) + logger.addHandler(console_hdl) + if save_to_file is not None and not os.path.exits(save_to_file): + file_hdl = logging.FileHandler(save_to_file) + file_hdl.setFormatter(formatter) + logger.addHandler(file_hdl) + logger.setLevel(logging.DEBUG) + logger.propagate = False + + def str2bool(v): # because argparse does not support to parse "true, False" as python # boolean directly @@ -33,10 +51,11 @@ class ArgumentGroup(object): def __init__(self, parser, title, des): self._group = parser.add_argument_group(title=title, description=des) - def add_arg(self, name, type, default, help, **kwargs): + def add_arg(self, name, type, default, help, positional_arg=False, **kwargs): + prefix = "" if positional_arg else "--" type = str2bool if type == bool else type self._group.add_argument( - "--" + name, + prefix + name, default=default, type=type, help=help + ' Default: %(default)s.', @@ -44,10 +63,10 @@ class ArgumentGroup(object): def print_arguments(args): - print('----------- Configuration Arguments -----------') + log.info('----------- Configuration Arguments -----------') for arg, value in sorted(six.iteritems(vars(args))): - print('%s: %s' % (arg, value)) - print('------------------------------------------------') + log.info('%s: %s' % (arg, value)) + log.info('------------------------------------------------') def check_cuda(use_cuda, err = \ @@ -56,7 +75,7 @@ def check_cuda(use_cuda, err = \ ): try: if use_cuda == True and fluid.is_compiled_with_cuda() == False: - print(err) + log.error(err) sys.exit(1) except Exception as e: pass diff --git a/utils/cards.py b/utils/cards.py index 70c58ee30da7f68f00d12af0b5dc1025dad42630..3c9c6709f71edd692c81d5fed8bfb87e9afd596f 100644 --- a/utils/cards.py +++ b/utils/cards.py @@ -11,7 +11,11 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import import os diff --git a/utils/cmrc2018_eval.py b/utils/cmrc2018_eval.py index 21f3bd734ed0ae1491ccf07c9eda4ace6ac68cc2..e35dc50daf3eb078acaeabffd07a0ae71836700f 100644 --- a/utils/cmrc2018_eval.py +++ b/utils/cmrc2018_eval.py @@ -1,4 +1,17 @@ # -*- coding: utf-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. ''' Evaluation script for CMRC 2018 version: v5 @@ -6,22 +19,25 @@ Note: v5 formatted output, add usage description v4 fixed segmentation issues ''' +from __future__ import absolute_import +from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + from collections import Counter, OrderedDict import string import re import argparse import json import sys -reload(sys) -sys.setdefaultencoding('utf8') import nltk import pdb # split Chinese with English def mixed_segmentation(in_str, rm_punc=False): - in_str = str(in_str).decode('utf-8').lower().strip() + in_str = in_str.lower().strip() segs_out = [] temp_str = "" sp_char = [ @@ -32,7 +48,7 @@ def mixed_segmentation(in_str, rm_punc=False): for char in in_str: if rm_punc and char in sp_char: continue - if re.search(ur'[\u4e00-\u9fa5]', char) or char in sp_char: + if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char: if temp_str != "": ss = nltk.word_tokenize(temp_str) segs_out.extend(ss) @@ -51,7 +67,7 @@ def mixed_segmentation(in_str, rm_punc=False): # remove punctuation def remove_punctuation(in_str): - in_str = str(in_str).decode('utf-8').lower().strip() + in_str = in_str.lower().strip() sp_char = [ '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(', @@ -102,7 +118,7 @@ def evaluate(ground_truth_file, prediction_file): skip_count += 1 continue - prediction = str(prediction_file[query_id]) + prediction = prediction_file[query_id] f1 += calc_f1_score(answers, prediction) em += calc_em_score(answers, prediction) diff --git a/utils/fp16.py b/utils/fp16.py index e153c2b9a1029897def264278c5dbe72e1f369f5..2bc15a48ba8e2373170180327160dcd50e5d22fc 100644 --- a/utils/fp16.py +++ b/utils/fp16.py @@ -16,27 +16,20 @@ from __future__ import print_function import paddle import paddle.fluid as fluid - -def cast_fp16_to_fp32(i, o, prog): - prog.global_block().append_op( - type="cast", - inputs={"X": i}, - outputs={"Out": o}, - attrs={ - "in_dtype": fluid.core.VarDesc.VarType.FP16, - "out_dtype": fluid.core.VarDesc.VarType.FP32 - }) - - -def cast_fp32_to_fp16(i, o, prog): +def append_cast_op(i, o, prog): + """ + Append a cast op in a given Program to cast input `i` to data type `o.dtype`. + Args: + i (Variable): The input Variable. + o (Variable): The output Variable. + prog (Program): The Program to append cast op. + """ prog.global_block().append_op( type="cast", inputs={"X": i}, outputs={"Out": o}, - attrs={ - "in_dtype": fluid.core.VarDesc.VarType.FP32, - "out_dtype": fluid.core.VarDesc.VarType.FP16 - }) + attrs={"in_dtype": i.dtype, + "out_dtype": o.dtype}) def copy_to_master_param(p, block): @@ -59,32 +52,66 @@ def copy_to_master_param(p, block): return new_p +def apply_dynamic_loss_scaling(loss_scaling, master_params_grads, + incr_every_n_steps, decr_every_n_nan_or_inf, + incr_ratio, decr_ratio): + _incr_every_n_steps = fluid.layers.fill_constant( + shape=[1], dtype='int32', value=incr_every_n_steps) + _decr_every_n_nan_or_inf = fluid.layers.fill_constant( + shape=[1], dtype='int32', value=decr_every_n_nan_or_inf) + + _num_good_steps = fluid.layers.create_global_var( + name=fluid.unique_name.generate("num_good_steps"), + shape=[1], + value=0, + dtype='int32', + persistable=True) + _num_bad_steps = fluid.layers.create_global_var( + name=fluid.unique_name.generate("num_bad_steps"), + shape=[1], + value=0, + dtype='int32', + persistable=True) + + grads = [fluid.layers.reduce_sum(g) for [_, g] in master_params_grads] + all_grads = fluid.layers.concat(grads) + all_grads_sum = fluid.layers.reduce_sum(all_grads) + is_overall_finite = fluid.layers.isfinite(all_grads_sum) + + update_loss_scaling(is_overall_finite, loss_scaling, _num_good_steps, + _num_bad_steps, _incr_every_n_steps, + _decr_every_n_nan_or_inf, incr_ratio, decr_ratio) + + # apply_gradient append all ops in global block, thus we shouldn't + # apply gradient in the switch branch. + with fluid.layers.Switch() as switch: + with switch.case(is_overall_finite): + pass + with switch.default(): + for _, g in master_params_grads: + fluid.layers.assign(fluid.layers.zeros_like(g), g) + + def create_master_params_grads(params_grads, main_prog, startup_prog, loss_scaling): master_params_grads = [] - tmp_role = main_prog._current_role - OpRole = fluid.core.op_proto_and_checker_maker.OpRole - main_prog._current_role = OpRole.Backward for p, g in params_grads: + with main_prog._optimized_guard([p, g]): # create master parameters - master_param = copy_to_master_param(p, main_prog.global_block()) - startup_master_param = startup_prog.global_block()._clone_variable( - master_param) - startup_p = startup_prog.global_block().var(p.name) - cast_fp16_to_fp32(startup_p, startup_master_param, startup_prog) - # cast fp16 gradients to fp32 before apply gradients - if g.name.find("layer_norm") > -1: - if loss_scaling > 1: - scaled_g = g / float(loss_scaling) - else: - scaled_g = g - master_params_grads.append([p, scaled_g]) - continue - master_grad = fluid.layers.cast(g, "float32") - if loss_scaling > 1: - master_grad = master_grad / float(loss_scaling) - master_params_grads.append([master_param, master_grad]) - main_prog._current_role = tmp_role + master_param = copy_to_master_param(p, main_prog.global_block()) + startup_master_param = startup_prog.global_block()._clone_variable( + master_param) + startup_p = startup_prog.global_block().var(p.name) + append_cast_op(startup_p, startup_master_param, startup_prog) + # cast fp16 gradients to fp32 before apply gradients + if g.name.find("layer_norm") > -1: + scaled_g = g / loss_scaling + master_params_grads.append([p, scaled_g]) + continue + master_grad = fluid.layers.cast(g, "float32") + master_grad = master_grad / loss_scaling + master_params_grads.append([master_param, master_grad]) + return master_params_grads @@ -94,4 +121,80 @@ def master_param_to_train_param(master_params_grads, params_grads, main_prog): if train_p.name.find("layer_norm") > -1: continue with main_prog._optimized_guard([m_p_g[0], m_p_g[1]]): - cast_fp32_to_fp16(m_p_g[0], train_p, main_prog) + append_cast_op(m_p_g[0], train_p, main_prog) + + +def update_loss_scaling(is_overall_finite, prev_loss_scaling, num_good_steps, + num_bad_steps, incr_every_n_steps, + decr_every_n_nan_or_inf, incr_ratio, decr_ratio): + """ + Update loss scaling according to overall gradients. If all gradients is + finite after incr_every_n_steps, loss scaling will increase by incr_ratio. + Otherwisw, loss scaling will decrease by decr_ratio after + decr_every_n_nan_or_inf steps and each step some gradients are infinite. + Args: + is_overall_finite (Variable): A boolean variable indicates whether + all gradients are finite. + prev_loss_scaling (Variable): Previous loss scaling. + num_good_steps (Variable): A variable accumulates good steps in which + all gradients are finite. + num_bad_steps (Variable): A variable accumulates bad steps in which + some gradients are infinite. + incr_every_n_steps (Variable): A variable represents increasing loss + scaling every n consecutive steps with + finite gradients. + decr_every_n_nan_or_inf (Variable): A variable represents decreasing + loss scaling every n accumulated + steps with nan or inf gradients. + incr_ratio(float): The multiplier to use when increasing the loss + scaling. + decr_ratio(float): The less-than-one-multiplier to use when decreasing + loss scaling. + """ + zero_steps = fluid.layers.fill_constant(shape=[1], dtype='int32', value=0) + with fluid.layers.Switch() as switch: + with switch.case(is_overall_finite): + should_incr_loss_scaling = fluid.layers.less_than( + incr_every_n_steps, num_good_steps + 1) + with fluid.layers.Switch() as switch1: + with switch1.case(should_incr_loss_scaling): + new_loss_scaling = prev_loss_scaling * incr_ratio + loss_scaling_is_finite = fluid.layers.isfinite( + new_loss_scaling) + with fluid.layers.Switch() as switch2: + with switch2.case(loss_scaling_is_finite): + fluid.layers.assign(new_loss_scaling, + prev_loss_scaling) + with switch2.default(): + pass + fluid.layers.assign(zero_steps, num_good_steps) + fluid.layers.assign(zero_steps, num_bad_steps) + + with switch1.default(): + fluid.layers.increment(num_good_steps) + fluid.layers.assign(zero_steps, num_bad_steps) + + with switch.default(): + should_decr_loss_scaling = fluid.layers.less_than( + decr_every_n_nan_or_inf, num_bad_steps + 1) + with fluid.layers.Switch() as switch3: + with switch3.case(should_decr_loss_scaling): + new_loss_scaling = prev_loss_scaling * decr_ratio + static_loss_scaling = \ + fluid.layers.fill_constant(shape=[1], + dtype='float32', + value=1.0) + less_than_one = fluid.layers.less_than(new_loss_scaling, + static_loss_scaling) + with fluid.layers.Switch() as switch4: + with switch4.case(less_than_one): + fluid.layers.assign(static_loss_scaling, + prev_loss_scaling) + with switch4.default(): + fluid.layers.assign(new_loss_scaling, + prev_loss_scaling) + fluid.layers.assign(zero_steps, num_good_steps) + fluid.layers.assign(zero_steps, num_bad_steps) + with switch3.default(): + fluid.layers.assign(zero_steps, num_good_steps) + fluid.layers.increment(num_bad_steps) diff --git a/utils/init.py b/utils/init.py index 3844d01298ecbb70aed37b467aebca62caadd391..fea03439dde396f05c474749eef11d3b3673ac39 100644 --- a/utils/init.py +++ b/utils/init.py @@ -12,27 +12,37 @@ # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import absolute_import +from __future__ import division from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + import os import six import ast import copy +import logging import numpy as np import paddle.fluid as fluid +log = logging.getLogger(__name__) def cast_fp32_to_fp16(exe, main_program): - print("Cast parameters to float16 data format.") + log.info("Cast parameters to float16 data format.") for param in main_program.global_block().all_parameters(): if not param.name.endswith(".master"): param_t = fluid.global_scope().find_var(param.name).get_tensor() data = np.array(param_t) - if param.name.find("layer_norm") == -1: + if param.name.startswith("encoder_layer") \ + and "layer_norm" not in param.name: param_t.set(np.float16(data).view(np.uint16), exe.place) - master_param_var = fluid.global_scope().find_var(param.name + - ".master") + + #load fp32 + master_param_var = fluid.global_scope().find_var(param.name + + ".master") if master_param_var is not None: master_param_var.get_tensor().set(data, exe.place) @@ -40,7 +50,7 @@ def cast_fp32_to_fp16(exe, main_program): def init_checkpoint(exe, init_checkpoint_path, main_program, use_fp16=False): assert os.path.exists( init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path - + def existed_persitables(var): if not fluid.io.is_persistable(var): return False @@ -51,7 +61,7 @@ def init_checkpoint(exe, init_checkpoint_path, main_program, use_fp16=False): init_checkpoint_path, main_program=main_program, predicate=existed_persitables) - print("Load model from {}".format(init_checkpoint_path)) + log.info("Load model from {}".format(init_checkpoint_path)) if use_fp16: cast_fp32_to_fp16(exe, main_program) @@ -74,7 +84,7 @@ def init_pretraining_params(exe, pretraining_params_path, main_program=main_program, predicate=existed_params) - print("Load pretraining parameters from {}.".format( + log.info("Load pretraining parameters from {}.".format( pretraining_params_path)) if use_fp16: