Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
ERNIE
提交
388c1c83
E
ERNIE
项目概览
PaddlePaddle
/
ERNIE
大约 1 年 前同步成功
通知
109
Star
5997
Fork
1270
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
29
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
E
ERNIE
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
29
Issue
29
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
388c1c83
编写于
3月 25, 2019
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify ernie model structure
上级
92f5f78f
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
117 addition
and
109 deletion
+117
-109
ERNIE/batching.py
ERNIE/batching.py
+10
-22
ERNIE/finetune/classifier.py
ERNIE/finetune/classifier.py
+7
-9
ERNIE/finetune/sequence_label.py
ERNIE/finetune/sequence_label.py
+65
-38
ERNIE/model/ernie.py
ERNIE/model/ernie.py
+16
-16
ERNIE/reader/pretraining.py
ERNIE/reader/pretraining.py
+6
-3
ERNIE/reader/task_reader.py
ERNIE/reader/task_reader.py
+6
-12
ERNIE/train.py
ERNIE/train.py
+7
-9
未找到文件。
ERNIE/batching.py
浏览文件 @
388c1c83
...
...
@@ -124,7 +124,7 @@ def prepare_batch_data(insts,
cls_id
=
None
,
sep_id
=
None
,
mask_id
=
None
,
return_
attn_bias
=
True
,
return_
input_mask
=
True
,
return_max_len
=
True
,
return_num_token
=
False
):
...
...
@@ -149,14 +149,13 @@ def prepare_batch_data(insts,
MASK
=
mask_id
)
# Second step: padding
src_id
,
next_sent_index
,
self_attn_bias
=
pad_batch_data
(
out
,
pad_idx
=
pad_id
,
return_
next_sent_pos
=
True
,
return_attn_bias
=
True
)
src_id
,
self_input_mask
=
pad_batch_data
(
out
,
pad_idx
=
pad_id
,
return_
input_mask
=
True
)
pos_id
=
pad_batch_data
(
batch_pos_ids
,
pad_idx
=
pad_id
)
sent_id
=
pad_batch_data
(
batch_sent_ids
,
pad_idx
=
pad_id
)
return_list
=
[
src_id
,
pos_id
,
sent_id
,
self_attn_bias
,
mask_label
,
mask_pos
,
labels
,
next_sent_index
src_id
,
pos_id
,
sent_id
,
self_input_mask
,
mask_label
,
mask_pos
,
labels
]
return
return_list
...
...
@@ -165,8 +164,7 @@ def prepare_batch_data(insts,
def
pad_batch_data
(
insts
,
pad_idx
=
0
,
return_pos
=
False
,
return_next_sent_pos
=
False
,
return_attn_bias
=
False
,
return_input_mask
=
False
,
return_max_len
=
False
,
return_num_token
=
False
):
"""
...
...
@@ -182,15 +180,6 @@ def pad_batch_data(insts,
[
inst
+
list
([
pad_idx
]
*
(
max_len
-
len
(
inst
)))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
max_len
,
1
])]
# next_sent_pos for extract first token embedding of each sentence
if
return_next_sent_pos
:
batch_size
=
inst_data
.
shape
[
0
]
max_seq_len
=
inst_data
.
shape
[
1
]
next_sent_index
=
np
.
array
(
range
(
0
,
batch_size
*
max_seq_len
,
max_seq_len
)).
astype
(
"int64"
).
reshape
(
-
1
,
1
)
return_list
+=
[
next_sent_index
]
# position data
if
return_pos
:
inst_pos
=
np
.
array
([
...
...
@@ -200,13 +189,12 @@ def pad_batch_data(insts,
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
max_len
,
1
])]
if
return_
attn_bias
:
if
return_
input_mask
:
# This is used to avoid attention on paddings.
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
input_mask_data
=
np
.
array
([[
1
]
*
len
(
inst
)
+
[
0
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
max_len
]),
[
1
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
input_mask_data
=
np
.
expand_dims
(
input_mask_data
,
axis
=-
1
)
return_list
+=
[
input_mask_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
...
...
ERNIE/finetune/classifier.py
浏览文件 @
388c1c83
...
...
@@ -31,26 +31,25 @@ def create_model(args, pyreader_name, ernie_config, is_prediction=False):
pyreader
=
fluid
.
layers
.
py_reader
(
capacity
=
50
,
shapes
=
[[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
args
.
max_seq_len
],
[
-
1
,
1
],
[
-
1
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
1
],
[
-
1
,
1
]],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'float
'
,
'int64
'
,
'int64'
,
'int64'
],
lod_levels
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'float
32
'
,
'int64'
,
'int64'
],
lod_levels
=
[
0
,
0
,
0
,
0
,
0
,
0
],
name
=
pyreader_name
,
use_double_buffer
=
True
)
(
src_ids
,
sent_ids
,
pos_ids
,
self_attn_mask
,
labels
,
next_sent_index
,
(
src_ids
,
sent_ids
,
pos_ids
,
input_mask
,
labels
,
qids
)
=
fluid
.
layers
.
read_file
(
pyreader
)
ernie
=
ErnieModel
(
src_ids
=
src_ids
,
position_ids
=
pos_ids
,
sentence_ids
=
sent_ids
,
self_attn_mask
=
self_attn
_mask
,
input_mask
=
input
_mask
,
config
=
ernie_config
,
use_fp16
=
args
.
use_fp16
)
cls_feats
=
ernie
.
get_pooled_output
(
next_sent_index
)
cls_feats
=
ernie
.
get_pooled_output
()
cls_feats
=
fluid
.
layers
.
dropout
(
x
=
cls_feats
,
dropout_prob
=
0.1
,
...
...
@@ -67,8 +66,7 @@ def create_model(args, pyreader_name, ernie_config, is_prediction=False):
if
is_prediction
:
probs
=
fluid
.
layers
.
softmax
(
logits
)
feed_targets_name
=
[
src_ids
.
name
,
pos_ids
.
name
,
sent_ids
.
name
,
self_attn_mask
.
name
,
next_sent_index
.
name
src_ids
.
name
,
pos_ids
.
name
,
sent_ids
.
name
,
input_mask
.
name
]
return
pyreader
,
probs
,
feed_targets_name
...
...
ERNIE/finetune/sequence_label.py
浏览文件 @
388c1c83
...
...
@@ -29,28 +29,26 @@ from six.moves import xrange
from
model.ernie
import
ErnieModel
def
create_model
(
args
,
pyreader_name
,
ernie_config
,
is_prediction
=
False
):
def
create_model
(
args
,
pyreader_name
,
ernie_config
,
is_prediction
=
False
):
pyreader
=
fluid
.
layers
.
py_reader
(
capacity
=
50
,
shapes
=
[[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
args
.
max_seq_len
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
1
]],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'float'
,
'int64'
,
'int64'
],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'float
32
'
,
'int64'
,
'int64'
],
lod_levels
=
[
0
,
0
,
0
,
0
,
0
,
0
],
name
=
pyreader_name
,
use_double_buffer
=
True
)
(
src_ids
,
sent_ids
,
pos_ids
,
self_attn
_mask
,
labels
,
(
src_ids
,
sent_ids
,
pos_ids
,
input
_mask
,
labels
,
seq_lens
)
=
fluid
.
layers
.
read_file
(
pyreader
)
ernie
=
ErnieModel
(
src_ids
=
src_ids
,
position_ids
=
pos_ids
,
sentence_ids
=
sent_ids
,
self_attn_mask
=
self_attn
_mask
,
input_mask
=
input
_mask
,
config
=
ernie_config
,
use_fp16
=
args
.
use_fp16
)
...
...
@@ -63,33 +61,40 @@ def create_model(args,
name
=
"cls_seq_label_out_w"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
0.02
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls_seq_label_out_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))
name
=
"cls_seq_label_out_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))
ret_labels
=
fluid
.
layers
.
reshape
(
x
=
labels
,
shape
=
[
-
1
,
1
])
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
ret_labels
=
fluid
.
layers
.
reshape
(
x
=
labels
,
shape
=
[
-
1
,
1
])
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
labels
=
fluid
.
layers
.
flatten
(
labels
,
axis
=
2
)
ce_loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
fluid
.
layers
.
flatten
(
logits
,
axis
=
2
),
label
=
labels
,
return_softmax
=
True
)
logits
=
fluid
.
layers
.
flatten
(
logits
,
axis
=
2
),
label
=
labels
,
return_softmax
=
True
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
if
args
.
use_fp16
and
args
.
loss_scaling
>
1.0
:
loss
*=
args
.
loss_scaling
graph_vars
=
{
"loss"
:
loss
,
graph_vars
=
{
"loss"
:
loss
,
"probs"
:
probs
,
"labels"
:
ret_labels
,
"infers"
:
ret_infers
,
"seq_lens"
:
seq_lens
}
"seq_lens"
:
seq_lens
}
for
k
,
v
in
graph_vars
.
items
():
v
.
persistable
=
True
v
.
persistable
=
True
return
pyreader
,
graph_vars
def
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
=
1
):
def
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
=
1
):
def
extract_bio_chunk
(
seq
):
chunks
=
[]
cur_chunk
=
None
...
...
@@ -109,18 +114,18 @@ def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
if
cur_chunk
is
not
None
:
chunks
.
append
(
cur_chunk
)
cur_chunk
=
{}
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
else
:
if
cur_chunk
is
None
:
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
continue
if
cur_chunk
[
"type"
]
==
tag_type
:
cur_chunk
[
"en"
]
=
index
+
1
else
:
chunks
.
append
(
cur_chunk
)
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
cur_chunk
=
{
"st"
:
index
,
"en"
:
index
+
1
,
"type"
:
tag_type
}
if
cur_chunk
is
not
None
:
chunks
.
append
(
cur_chunk
)
...
...
@@ -151,10 +156,13 @@ def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
infer_index
=
0
label_index
=
0
while
label_index
<
len
(
label_chunks
)
and
infer_index
<
len
(
infer_chunks
):
if
infer_chunks
[
infer_index
][
"st"
]
<
label_chunks
[
label_index
][
"st"
]:
while
label_index
<
len
(
label_chunks
)
and
infer_index
<
len
(
infer_chunks
):
if
infer_chunks
[
infer_index
][
"st"
]
<
label_chunks
[
label_index
][
"st"
]:
infer_index
+=
1
elif
infer_chunks
[
infer_index
][
"st"
]
>
label_chunks
[
label_index
][
"st"
]:
elif
infer_chunks
[
infer_index
][
"st"
]
>
label_chunks
[
label_index
][
"st"
]:
label_index
+=
1
else
:
if
infer_chunks
[
infer_index
][
"en"
]
==
label_chunks
[
label_index
][
"en"
]
and
\
...
...
@@ -168,6 +176,7 @@ def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
return
num_label
,
num_infer
,
num_correct
def
calculate_f1
(
num_label
,
num_infer
,
num_correct
):
if
num_infer
==
0
:
precision
=
0.0
...
...
@@ -185,10 +194,18 @@ def calculate_f1(num_label, num_infer, num_correct):
f1
=
2
*
precision
*
recall
/
(
precision
+
recall
)
return
precision
,
recall
,
f1
def
evaluate
(
exe
,
program
,
pyreader
,
graph_vars
,
tag_num
,
eval_phase
,
dev_count
=
1
):
fetch_list
=
[
graph_vars
[
"labels"
].
name
,
graph_vars
[
"infers"
].
name
,
graph_vars
[
"seq_lens"
].
name
]
def
evaluate
(
exe
,
program
,
pyreader
,
graph_vars
,
tag_num
,
eval_phase
,
dev_count
=
1
):
fetch_list
=
[
graph_vars
[
"labels"
].
name
,
graph_vars
[
"infers"
].
name
,
graph_vars
[
"seq_lens"
].
name
]
if
eval_phase
==
"train"
:
fetch_list
.
append
(
graph_vars
[
"loss"
].
name
)
...
...
@@ -196,9 +213,15 @@ def evaluate(exe, program, pyreader, graph_vars, tag_num, eval_phase, dev_count=
fetch_list
.
append
(
graph_vars
[
"learning_rate"
].
name
)
outputs
=
exe
.
run
(
fetch_list
=
fetch_list
)
np_labels
,
np_infers
,
np_lens
,
np_loss
=
outputs
[:
4
]
num_label
,
num_infer
,
num_correct
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
)
num_label
,
num_infer
,
num_correct
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
)
precision
,
recall
,
f1
=
calculate_f1
(
num_label
,
num_infer
,
num_correct
)
outputs
=
{
"precision"
:
precision
,
"recall"
:
recall
,
"f1"
:
f1
,
"loss"
:
np
.
mean
(
np_loss
)}
outputs
=
{
"precision"
:
precision
,
"recall"
:
recall
,
"f1"
:
f1
,
"loss"
:
np
.
mean
(
np_loss
)
}
if
"learning_rate"
in
graph_vars
:
outputs
[
"lr"
]
=
float
(
outputs
[
4
][
0
])
return
outputs
...
...
@@ -209,8 +232,10 @@ def evaluate(exe, program, pyreader, graph_vars, tag_num, eval_phase, dev_count=
pyreader
.
start
()
while
True
:
try
:
np_labels
,
np_infers
,
np_lens
=
exe
.
run
(
program
=
program
,
fetch_list
=
fetch_list
)
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
)
np_labels
,
np_infers
,
np_lens
=
exe
.
run
(
program
=
program
,
fetch_list
=
fetch_list
)
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
)
total_infer
+=
infer_num
total_label
+=
label_num
total_correct
+=
correct_num
...
...
@@ -219,8 +244,10 @@ def evaluate(exe, program, pyreader, graph_vars, tag_num, eval_phase, dev_count=
pyreader
.
reset
()
break
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
time_end
=
time
.
time
()
print
(
"[%s evaluation] f1: %f, precision: %f, recall: %f, elapsed time: %f s"
%
(
eval_phase
,
f1
,
precision
,
recall
,
time_end
-
time_begin
))
print
(
"[%s evaluation] f1: %f, precision: %f, recall: %f, elapsed time: %f s"
%
(
eval_phase
,
f1
,
precision
,
recall
,
time_end
-
time_begin
))
ERNIE/model/ernie.py
浏览文件 @
388c1c83
...
...
@@ -52,7 +52,7 @@ class ErnieModel(object):
src_ids
,
position_ids
,
sentence_ids
,
self_attn
_mask
,
input
_mask
,
config
,
weight_sharing
=
True
,
use_fp16
=
False
):
...
...
@@ -78,9 +78,9 @@ class ErnieModel(object):
self
.
_param_initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
config
[
'initializer_range'
])
self
.
_build_model
(
src_ids
,
position_ids
,
sentence_ids
,
self_attn
_mask
)
self
.
_build_model
(
src_ids
,
position_ids
,
sentence_ids
,
input
_mask
)
def
_build_model
(
self
,
src_ids
,
position_ids
,
sentence_ids
,
self_attn
_mask
):
def
_build_model
(
self
,
src_ids
,
position_ids
,
sentence_ids
,
input
_mask
):
# padding id in vocabulary must be set to 0
emb_out
=
fluid
.
layers
.
embedding
(
input
=
src_ids
,
...
...
@@ -110,9 +110,12 @@ class ErnieModel(object):
emb_out
,
'nd'
,
self
.
_prepostprocess_dropout
,
name
=
'pre_encoder'
)
if
self
.
_dtype
==
"float16"
:
self_attn_mask
=
fluid
.
layers
.
cast
(
x
=
self_attn_mask
,
dtype
=
self
.
_dtype
)
input_mask
=
fluid
.
layers
.
cast
(
x
=
input_mask
,
dtype
=
self
.
_dtype
)
self_attn_mask
=
fluid
.
layers
.
matmul
(
x
=
input_mask
,
y
=
input_mask
,
transpose_y
=
True
)
self_attn_mask
=
fluid
.
layers
.
scale
(
x
=
self_attn_mask
,
scale
=
1000.0
,
bias
=-
1.0
,
bias_after_scale
=
False
)
n_head_self_attn_mask
=
fluid
.
layers
.
stack
(
x
=
[
self_attn_mask
]
*
self
.
_n_head
,
axis
=
1
)
n_head_self_attn_mask
.
stop_gradient
=
True
...
...
@@ -138,13 +141,10 @@ class ErnieModel(object):
def
get_sequence_output
(
self
):
return
self
.
_enc_out
def
get_pooled_output
(
self
,
next_sent_index
):
def
get_pooled_output
(
self
):
"""Get the first feature of each sequence for classification"""
self
.
_reshaped_emb_out
=
fluid
.
layers
.
reshape
(
x
=
self
.
_enc_out
,
shape
=
[
-
1
,
self
.
_emb_size
],
inplace
=
True
)
next_sent_index
=
fluid
.
layers
.
cast
(
x
=
next_sent_index
,
dtype
=
'int32'
)
next_sent_feat
=
fluid
.
layers
.
gather
(
input
=
self
.
_reshaped_emb_out
,
index
=
next_sent_index
)
next_sent_feat
=
fluid
.
layers
.
slice
(
input
=
self
.
_enc_out
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
1
])
next_sent_feat
=
fluid
.
layers
.
fc
(
input
=
next_sent_feat
,
size
=
self
.
_emb_size
,
...
...
@@ -154,17 +154,17 @@ class ErnieModel(object):
bias_attr
=
"pooled_fc.b_0"
)
return
next_sent_feat
def
get_pretraining_output
(
self
,
mask_label
,
mask_pos
,
labels
,
next_sent_index
):
def
get_pretraining_output
(
self
,
mask_label
,
mask_pos
,
labels
):
"""Get the loss & accuracy for pretraining"""
mask_pos
=
fluid
.
layers
.
cast
(
x
=
mask_pos
,
dtype
=
'int32'
)
# extract the first token feature in each sentence
next_sent_feat
=
self
.
get_pooled_output
(
next_sent_index
)
next_sent_feat
=
self
.
get_pooled_output
()
reshaped_emb_out
=
fluid
.
layers
.
reshape
(
x
=
self
.
_enc_out
,
shape
=
[
-
1
,
self
.
_emb_size
])
# extract masked tokens' feature
mask_feat
=
fluid
.
layers
.
gather
(
input
=
self
.
_reshaped_emb_out
,
index
=
mask_pos
)
mask_feat
=
fluid
.
layers
.
gather
(
input
=
reshaped_emb_out
,
index
=
mask_pos
)
# transform: fc
mask_trans_feat
=
fluid
.
layers
.
fc
(
...
...
ERNIE/reader/pretraining.py
浏览文件 @
388c1c83
...
...
@@ -171,9 +171,12 @@ class ErnieDataReader(object):
if
len
(
token_seq
)
>
self
.
max_seq_len
:
miss_num
+=
1
continue
type_seq
=
[
0
]
*
(
len
(
left_tokens
)
+
2
)
+
[
1
]
*
(
len
(
right_tokens
)
+
1
)
type_seq
=
[
0
]
*
(
len
(
left_tokens
)
+
2
)
+
[
1
]
*
(
len
(
right_tokens
)
+
1
)
pos_seq
=
range
(
len
(
token_seq
))
seg_label_seq
=
[
-
1
]
+
left_seg_labels
+
[
-
1
]
+
right_seg_labels
+
[
-
1
]
seg_label_seq
=
[
-
1
]
+
left_seg_labels
+
[
-
1
]
+
right_seg_labels
+
[
-
1
]
assert
len
(
token_seq
)
==
len
(
type_seq
)
==
len
(
pos_seq
)
==
len
(
seg_label_seq
),
\
"[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True"
...
...
@@ -290,7 +293,7 @@ class ErnieDataReader(object):
cls_id
=
self
.
cls_id
,
sep_id
=
self
.
sep_id
,
mask_id
=
self
.
mask_id
,
return_
attn_bias
=
True
,
return_
input_mask
=
True
,
return_max_len
=
False
,
return_num_token
=
False
)
...
...
ERNIE/reader/task_reader.py
浏览文件 @
388c1c83
...
...
@@ -247,11 +247,8 @@ class ClassifyReader(BaseReader):
batch_qids
=
np
.
array
([]).
astype
(
"int64"
).
reshape
([
-
1
,
1
])
# padding
padded_token_ids
,
next_sent_index
,
self_attn_bias
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_next_sent_pos
=
True
,
return_attn_bias
=
True
)
padded_token_ids
,
input_mask
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_input_mask
=
True
)
padded_text_type_ids
=
pad_batch_data
(
batch_text_type_ids
,
pad_idx
=
self
.
pad_id
)
padded_position_ids
=
pad_batch_data
(
...
...
@@ -259,7 +256,7 @@ class ClassifyReader(BaseReader):
return_list
=
[
padded_token_ids
,
padded_text_type_ids
,
padded_position_ids
,
self_attn_bias
,
batch_labels
,
next_sent_index
,
batch_qids
input_mask
,
batch_labels
,
batch_qids
]
return
return_list
...
...
@@ -274,11 +271,8 @@ class SequenceLabelReader(BaseReader):
batch_seq_lens
=
[
len
(
record
.
token_ids
)
for
record
in
batch_records
]
# padding
padded_token_ids
,
self_attn_bias
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_next_sent_pos
=
False
,
return_attn_bias
=
True
)
padded_token_ids
,
input_mask
=
pad_batch_data
(
batch_token_ids
,
pad_idx
=
self
.
pad_id
,
return_input_mask
=
True
)
padded_text_type_ids
=
pad_batch_data
(
batch_text_type_ids
,
pad_idx
=
self
.
pad_id
)
padded_position_ids
=
pad_batch_data
(
...
...
@@ -290,7 +284,7 @@ class SequenceLabelReader(BaseReader):
return_list
=
[
padded_token_ids
,
padded_text_type_ids
,
padded_position_ids
,
self_attn_bias
,
padded_label_ids
,
batch_seq_lens
input_mask
,
padded_label_ids
,
batch_seq_lens
]
return
return_list
...
...
ERNIE/train.py
浏览文件 @
388c1c83
...
...
@@ -43,31 +43,29 @@ def create_model(pyreader_name, ernie_config):
pyreader
=
fluid
.
layers
.
py_reader
(
capacity
=
70
,
shapes
=
[[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
args
.
max_seq_len
],
[
-
1
,
1
],
[
-
1
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
args
.
max_seq_len
,
1
],
[
-
1
,
1
],
[
-
1
,
1
],
[
-
1
,
1
]],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'float'
,
'int64'
,
'int64'
,
'int64'
,
'int64'
'int64'
,
'int64'
,
'int64'
,
'float32'
,
'int64'
,
'int64'
,
'int64'
],
lod_levels
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
lod_levels
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
],
name
=
pyreader_name
,
use_double_buffer
=
True
)
(
src_ids
,
pos_ids
,
sent_ids
,
self_attn_mask
,
mask_label
,
mask_pos
,
label
s
,
next_sent_index
)
=
fluid
.
layers
.
read_file
(
pyreader
)
(
src_ids
,
pos_ids
,
sent_ids
,
input_mask
,
mask_label
,
mask_po
s
,
labels
)
=
fluid
.
layers
.
read_file
(
pyreader
)
ernie
=
ErnieModel
(
src_ids
=
src_ids
,
position_ids
=
pos_ids
,
sentence_ids
=
sent_ids
,
self_attn_mask
=
self_attn
_mask
,
input_mask
=
input
_mask
,
config
=
ernie_config
,
weight_sharing
=
args
.
weight_sharing
,
use_fp16
=
args
.
use_fp16
)
next_sent_acc
,
mask_lm_loss
,
total_loss
=
ernie
.
get_pretraining_output
(
mask_label
,
mask_pos
,
labels
,
next_sent_index
)
mask_label
,
mask_pos
,
labels
)
if
args
.
use_fp16
and
args
.
loss_scaling
>
1.0
:
total_loss
*=
args
.
loss_scaling
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录