run_classifier.py 18.2 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

import reader.cls as reader
from model.bert import BertConfig
from model.classifier import create_model
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments
from utils.init import init_pretraining_params, init_checkpoint
C
chengduozh 已提交
35 36
import dist_utils

Y
Yibing Liu 已提交
37 38 39 40 41 42 43 44 45 46 47 48

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
49
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
Y
Yibing Liu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling",      float,  1.0,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",      str,  None,  "Path to training data.")
data_g.add_arg("vocab_path",    str,  None,  "Vocabulary path.")
data_g.add_arg("max_seq_len",   int,  512,   "Number of words of the longest seqence.")
70
data_g.add_arg("batch_size",    int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
Y
Yibing Liu 已提交
71 72 73 74 75
data_g.add_arg("in_tokens",     bool, False,
              "If set, the batch size will be the maximum number of tokens in one batch. "
              "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
76
data_g.add_arg("random_seed",   int,  0,     "Random seed.")
Y
Yibing Liu 已提交
77 78 79 80

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
C
chengduozh 已提交
81
run_type_g.add_arg("shuffle",                      bool,   True,  "")
82
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
Y
Yibing Liu 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")

args = parser.parse_args()
# yapf: enable.


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
          (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
           np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))

C
chengduozh 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def get_device_num():
    visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
    # NOTE(zcd): use multi processes to train the model,
    # and each process use one GPU card.
    num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    if num_trainers > 1 : return 1
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi','-L']).decode().count('\n')
    return device_num

def update_lr(args):
    num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    args.learning_rate = args.learning_rate / num_trainers
Y
Yibing Liu 已提交
127 128 129 130 131 132 133

def main(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
C
chengduozh 已提交
134
        dev_count = get_device_num() # fluid.core.get_cuda_device_count()
Y
Yibing Liu 已提交
135 136 137 138 139
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

C
chengduozh 已提交
140 141
    update_lr(args)

Y
Yibing Liu 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

C
chengduozh 已提交
162
    train_program = fluid.Program()
Y
Yibing Liu 已提交
163 164 165
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed
C
chengduozh 已提交
166
        train_program.random_seed = args.random_seed
Y
Yibing Liu 已提交
167 168 169 170 171 172

    if args.do_train:
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch,
C
chengduozh 已提交
173
            shuffle=args.shuffle)
Y
Yibing Liu 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

        num_train_examples = processor.get_num_examples(phase='train')

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='train_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)
                scheduled_lr = optimization(
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    loss_scaling=args.loss_scaling)

                fluid.memory_optimize(
                    input_program=train_program,
                    skip_opt_set=[
                        loss.name, probs.name, accuracy.name, num_seqs.name
                    ])

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='test_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
268
        exec_strategy.use_experimental_executor = args.use_fast_executor
Y
Yibing Liu 已提交
269
        exec_strategy.num_threads = dev_count
270
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
C
chengduozh 已提交
271
        build_strategy = fluid.BuildStrategy()
C
chengduozh 已提交
272 273 274

        dist_utils.prepare_for_multi_process(exe, build_strategy, train_program, startup_prog)

Y
Yibing Liu 已提交
275 276 277 278
        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=loss.name,
            exec_strategy=exec_strategy,
C
chengduozh 已提交
279
            build_strategy = build_strategy,
Y
Yibing Liu 已提交
280
            main_program=train_program)
C
chengduozh 已提交
281 282
        num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
        if num_trainers > 1:
C
chengduozh 已提交
283
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(
C
chengduozh 已提交
284 285
                train_data_generator)
                        
Y
Yibing Liu 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            main_program=test_prog,
            share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
C
chengduozh 已提交
301
        throughput = []
Y
Yibing Liu 已提交
302 303
        while True:
            try:
C
chengduozh 已提交
304
                # steps += 1
Y
Yibing Liu 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        fetch_list = [loss.name, accuracy.name, num_seqs.name]
                    else:
                        fetch_list = [
                            loss.name, accuracy.name, scheduled_lr.name,
                            num_seqs.name
                        ]
                else:
                    fetch_list = []

                outputs = train_exe.run(fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        np_loss, np_acc, np_num_seqs = outputs
                    else:
                        np_loss, np_acc, np_lr, np_num_seqs = outputs

                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            np_lr[0]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = processor.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin
C
chengduozh 已提交
340 341 342

                    log_record = "epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}".format(
                           current_epoch, current_example, num_train_examples,
Y
Yibing Liu 已提交
343
                           steps, np.sum(total_cost) / np.sum(total_num_seqs),
C
chengduozh 已提交
344 345 346 347 348 349 350
                           np.sum(total_acc) / np.sum(total_num_seqs))
                    if steps > 0 :
                        throughput.append( args.skip_steps / used_time)
                        log_record = log_record + ", speed: %f steps/s" % (args.skip_steps / used_time)
                        print(log_record)
                    else:
                        print(log_record)
Y
Yibing Liu 已提交
351 352 353
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

C
chengduozh 已提交
354
                steps += 1
Y
Yibing Liu 已提交
355 356 357 358 359 360
                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
C
chengduozh 已提交
361 362
                    print("Average throughtput: %s" % (np.average(throughput)))
                    throughput = []
Y
Yibing Liu 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")
                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='test',
                                epoch=1,
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "test")
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
                batch_size=args.batch_size, phase='dev', epoch=1,
                shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
                batch_size=args.batch_size,
                phase='test',
                epoch=1,
                shuffle=False))
        print("Final test result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "test")


if __name__ == '__main__':
    print_arguments(args)
    main(args)