batching.py 7.2 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np


def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3):
    """
    Add mask for batch_tokens, return out, mask_label, mask_pos;
    Note: mask_pos responding the batch_tokens after padded;
    """
    max_len = max([len(sent) for sent in batch_tokens])
    mask_label = []
    mask_pos = []
    prob_mask = np.random.rand(total_token_num)
    # Note: the first token is [CLS], so [low=1]
    replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num)
    pre_sent_len = 0
    prob_index = 0
    for sent_index, sent in enumerate(batch_tokens):
        mask_flag = False
        prob_index += pre_sent_len
        for token_index, token in enumerate(sent):
            prob = prob_mask[prob_index + token_index]
            if prob > 0.15:
                continue
            elif 0.03 < prob <= 0.15:
                # mask
                if token != SEP and token != CLS:
                    mask_label.append(sent[token_index])
                    sent[token_index] = MASK
                    mask_flag = True
                    mask_pos.append(sent_index * max_len + token_index)
            elif 0.015 < prob <= 0.03:
                # random replace
                if token != SEP and token != CLS:
                    mask_label.append(sent[token_index])
                    sent[token_index] = replace_ids[prob_index + token_index]
                    mask_flag = True
                    mask_pos.append(sent_index * max_len + token_index)
            else:
                # keep the original token
                if token != SEP and token != CLS:
                    mask_label.append(sent[token_index])
                    mask_pos.append(sent_index * max_len + token_index)
        pre_sent_len = len(sent)

        # ensure at least mask one word in a sentence
        while not mask_flag:
            token_index = int(np.random.randint(1, high=len(sent) - 1, size=1))
            if sent[token_index] != SEP and sent[token_index] != CLS:
                mask_label.append(sent[token_index])
                sent[token_index] = MASK
                mask_flag = True
                mask_pos.append(sent_index * max_len + token_index)
    mask_label = np.array(mask_label).astype("int64").reshape([-1, 1])
    mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1])
    return batch_tokens, mask_label, mask_pos


def prepare_batch_data(insts,
                       total_token_num,
                       voc_size=0,
                       pad_id=None,
                       cls_id=None,
                       sep_id=None,
                       mask_id=None,
                       return_attn_bias=True,
                       return_max_len=True,
                       return_num_token=False):
    """
    1. generate Tensor of data
    2. generate Tensor of position
    3. generate self attention mask, [shape: batch_size *  max_len * max_len]
    """

    batch_src_ids = [inst[0] for inst in insts]
    batch_sent_ids = [inst[1] for inst in insts]
    batch_pos_ids = [inst[2] for inst in insts]
    labels_list = []
    # compatible with squad, whose example includes start/end positions, 
    # or unique id

    for i in range(3, len(insts[0]), 1):
        labels = [inst[i] for inst in insts]
        labels = np.array(labels).astype("int64").reshape([-1, 1])
        labels_list.append(labels)

    # First step: do mask without padding
    if mask_id >= 0:
        out, mask_label, mask_pos = mask(
            batch_src_ids,
            total_token_num,
            vocab_size=voc_size,
            CLS=cls_id,
            SEP=sep_id,
            MASK=mask_id)
    else:
        out = batch_src_ids
    # Second step: padding
    src_id, next_sent_index, self_attn_bias = pad_batch_data(
        out, pad_idx=pad_id, return_next_sent_pos=True, return_attn_bias=True)
    pos_id = pad_batch_data(
        batch_pos_ids, pad_idx=pad_id, return_pos=False, return_attn_bias=False)
    sent_id = pad_batch_data(
        batch_sent_ids,
        pad_idx=pad_id,
        return_pos=False,
        return_attn_bias=False)

    if mask_id >= 0:
        return_list = [src_id, pos_id, sent_id, self_attn_bias, mask_label, mask_pos] \
                      + labels_list + [next_sent_index]
    else:
        return_list = [src_id, pos_id, sent_id, self_attn_bias] + labels_list \
                     + [next_sent_index]

    return return_list if len(return_list) > 1 else return_list[0]


def pad_batch_data(insts,
                   pad_idx=0,
                   return_pos=False,
                   return_next_sent_pos=False,
                   return_attn_bias=False,
                   return_max_len=False,
                   return_num_token=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.

    inst_data = np.array(
        [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]

    # next_sent_pos for extract first token embedding of each sentence
    if return_next_sent_pos:
        batch_size = inst_data.shape[0]
        max_seq_len = inst_data.shape[1]
        next_sent_index = np.array(
            range(0, batch_size * max_seq_len, max_seq_len)).astype(
                "int64").reshape(-1, 1)
        return_list += [next_sent_index]

    # position data
    if return_pos:
        inst_pos = np.array([
            list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
            for inst in insts
        ])

        return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]

    if return_attn_bias:
        # This is used to avoid attention on paddings.
        slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                       (max_len - len(inst)) for inst in insts])
        slf_attn_bias_data = np.tile(
            slf_attn_bias_data.reshape([-1, 1, max_len]), [1, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]

    if return_max_len:
        return_list += [max_len]

    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]

    return return_list if len(return_list) > 1 else return_list[0]


if __name__ == "__main__":
    pass