inference.cc 6.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <paddle_inference_api.h>
#include <chrono>
19
#include <iostream>
Y
Yibing Liu 已提交
20 21 22 23 24 25
#include <fstream>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>

26 27 28 29 30 31
DEFINE_string(model_dir, "", "Inference model directory.");
DEFINE_string(data, "", "Input data path.");
DEFINE_int32(repeat, 1, "Repeat times.");
DEFINE_int32(num_labels, 3, "Number of labels.");
DEFINE_bool(output_prediction, false, "Whether to output the prediction results.");
DEFINE_bool(use_gpu, false, "Whether to use GPU for prediction.");
Y
Yibing Liu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

80

Y
Yibing Liu 已提交
81 82 83 84 85
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
86 87 88 89
  if (data.size() < 2) {
    LOG(ERROR) << "parse tensor error!";
    return false;
  }
Y
Yibing Liu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

118
  if (fields.size() < 4) return false;
Y
Yibing Liu 已提交
119 120

  tensors->clear();
121
  tensors->reserve(4);
Y
Yibing Liu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

  int i = 0;
  // src_id
  paddle::PaddleTensor src_id;
  ParseTensor<int64_t>(fields[i++], &src_id);
  tensors->push_back(src_id);

  // pos_id
  paddle::PaddleTensor pos_id;
  ParseTensor<int64_t>(fields[i++], &pos_id);
  tensors->push_back(pos_id);

  // segment_id
  paddle::PaddleTensor segment_id;
  ParseTensor<int64_t>(fields[i++], &segment_id);
  tensors->push_back(segment_id);

139 140 141 142
  // input mask
  paddle::PaddleTensor input_mask;
  ParseTensor<float>(fields[i++], &input_mask);
  tensors->push_back(input_mask);
Y
Yibing Liu 已提交
143 144 145 146

  return true;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
template <typename T>
void PrintTensor(const paddle::PaddleTensor &t) {
  std::stringstream ss;
  ss.str({});
  ss.clear();
  ss << "Tensor: shape[";
  for (auto i: t.shape) {
    ss << i << " ";
  }
  ss << "], data[";
  T *data = static_cast<T *>(t.data.data());
  for (int i = 0; i < t.data.length() / sizeof(T); i++) {
    ss << data[i] << " ";
  }

  ss << "]";
  LOG(INFO) << ss.str();
}

void PrintInputs(const std::vector<paddle::PaddleTensor> &inputs) {
  for (const auto &t : inputs) {
    if (t.dtype == paddle::PaddleDType::INT64) {
      PrintTensor<int64_t>(t);
    } else {
      PrintTensor<float>(t);
    }
  }
}

Y
Yibing Liu 已提交
176
// Print outputs to log
177 178 179 180 181 182 183 184 185
void PrintOutputs(const std::vector<paddle::PaddleTensor> &outputs, int &cnt) {
  for (size_t i = 0; i < outputs.front().data.length() / sizeof(float); 
       i += FLAGS_num_labels) {
    std::cout << cnt << "\t";
    for (size_t j = 0; j < FLAGS_num_labels; ++j) {
      std::cout  << static_cast<float *>(outputs.front().data.data())[i+j] << "\t";
    }
    std::cout << std::endl;
    cnt += 1;
Y
Yibing Liu 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_data);
  std::string line;

  int lineno = 0;
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
    if (!ParseLine(line, &feed_data)) {
      LOG(ERROR) << "Parse line[" << lineno << "] error!";
    } else {
      inputs->push_back(std::move(feed_data));
    }
  }

  return true;
}

int main(int argc, char *argv[]) {
  google::InitGoogleLogging(*argv);
  gflags::ParseCommandLineFlags(&argc, &argv, true);

  if (FLAGS_model_dir.empty()) {
    LOG(ERROR) << "please set model dir";
    return -1;
  }

  paddle::NativeConfig config;
  config.model_dir = FLAGS_model_dir;
222 223 224 225 226
  if (FLAGS_use_gpu) {
    config.use_gpu = true;
    config.fraction_of_gpu_memory = 0.15;
    config.device = 0;
  }
Y
Yibing Liu 已提交
227 228 229 230 231 232 233 234 235 236 237 238

  auto predictor = CreatePaddlePredictor(config);

  std::vector<std::vector<paddle::PaddleTensor>> inputs;
  if (!LoadInputData(&inputs)) {
    LOG(ERROR) << "load input data error!";
    return -1;
  }

  std::vector<paddle::PaddleTensor> fetch;
  int total_time{0};
  int num_samples{0};
239
  int out_cnt = 0;
Y
Yibing Liu 已提交
240 241
  for (int i = 0; i < FLAGS_repeat; i++) {
    for (auto feed : inputs) {
242
      fetch.clear();
Y
Yibing Liu 已提交
243 244
      auto start = std::chrono::system_clock::now();
      predictor->Run(feed, &fetch);
245 246 247
      if (FLAGS_output_prediction && i == 0) {
	PrintOutputs(fetch, out_cnt);
      }
Y
Yibing Liu 已提交
248 249 250 251 252
      auto end = std::chrono::system_clock::now();
      if (!fetch.empty()) {
        total_time +=
            std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
                .count();
253
        num_samples += fetch.front().data.length() / FLAGS_num_labels / sizeof(float);
Y
Yibing Liu 已提交
254 255 256
      }
    }
  }
257
  
Y
Yibing Liu 已提交
258 259 260

  auto per_sample_ms =
      static_cast<float>(total_time) / num_samples;
261 262
  LOG(INFO) << "Run on " << num_samples 
            << " samples over "<< FLAGS_repeat << " times, average latency: " << per_sample_ms
Y
Yibing Liu 已提交
263 264 265 266
            << "ms per sample.";

  return 0;
}