#! /usr/bin/env bash mkdir -p data TARGET_DIR=${MAIN_ROOT}/examples/dataset mkdir -p ${TARGET_DIR} # download data, generate manifests python3 ${TARGET_DIR}/aishell/aishell.py \ --manifest_prefix="data/manifest" \ --target_dir="${TARGET_DIR}/aishell" if [ $? -ne 0 ]; then echo "Prepare Aishell failed. Terminated." exit 1 fi for dataset in train dev test; do mv data/manifest.${dataset} data/manifest.${dataset}.raw done # build vocabulary python3 ${MAIN_ROOT}/utils/build_vocab.py \ --unit_type="char" \ --count_threshold=0 \ --vocab_path="data/vocab.txt" \ --manifest_paths "data/manifest.train.raw" if [ $? -ne 0 ]; then echo "Build vocabulary failed. Terminated." exit 1 fi # compute mean and stddev for normalizer python3 ${MAIN_ROOT}/utils/compute_mean_std.py \ --manifest_path="data/manifest.train.raw" \ --specgram_type="fbank" \ --feat_dim=80 \ --delta_delta=false \ --stride_ms=10.0 \ --window_ms=25.0 \ --sample_rate=16000 \ --num_samples=2000 \ --num_workers=0 \ --output_path="data/mean_std.json" if [ $? -ne 0 ]; then echo "Compute mean and stddev failed. Terminated." exit 1 fi # format manifest with tokenids, vocab size for dataset in train dev test; do python3 ${MAIN_ROOT}/utils/format_data.py \ --feat_type "raw" \ --cmvn_path "data/mean_std.npz" \ --unit_type "char" \ --vocab_path="data/vocab.txt" \ --manifest_path="data/manifest.${dataset}.raw" \ --output_path="data/manifest.${dataset}" done if [ $? -ne 0 ]; then echo "Formt mnaifest failed. Terminated." exit 1 fi echo "Aishell data preparation done." exit 0