# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import nn from paddle.nn import functional as F from deepspeech.modules.activation import brelu from deepspeech.modules.mask import make_non_pad_mask from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = ['ConvStack', "conv_output_size"] def conv_output_size(I, F, P, S): # https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks#hyperparameters # Output size after Conv: # By noting I the length of the input volume size, # F the length of the filter, # P the amount of zero padding, # S the stride, # then the output size O of the feature map along that dimension is given by: # O = (I - F + Pstart + Pend) // S + 1 # When Pstart == Pend == P, we can replace Pstart + Pend by 2P. # When Pstart == Pend == 0 # O = (I - F - S) // S # https://iq.opengenus.org/output-size-of-convolution/ # Output height = (Input height + padding height top + padding height bottom - kernel height) / (stride height) + 1 # Output width = (Output width + padding width right + padding width left - kernel width) / (stride width) + 1 return (I - F + 2 * P - S) // S class ConvBn(nn.Layer): """Convolution layer with batch normalization. :param kernel_size: The x dimension of a filter kernel. Or input a tuple for two image dimension. :type kernel_size: int|tuple|list :param num_channels_in: Number of input channels. :type num_channels_in: int :param num_channels_out: Number of output channels. :type num_channels_out: int :param stride: The x dimension of the stride. Or input a tuple for two image dimension. :type stride: int|tuple|list :param padding: The x dimension of the padding. Or input a tuple for two image dimension. :type padding: int|tuple|list :param act: Activation type, relu|brelu :type act: string :return: Batch norm layer after convolution layer. :rtype: Variable """ def __init__(self, num_channels_in, num_channels_out, kernel_size, stride, padding, act): super().__init__() assert len(kernel_size) == 2 assert len(stride) == 2 assert len(padding) == 2 self.kernel_size = kernel_size self.stride = stride self.padding = padding self.conv = nn.Conv2D( num_channels_in, num_channels_out, kernel_size=kernel_size, stride=stride, padding=padding, weight_attr=None, bias_attr=False, data_format='NCHW') self.bn = nn.BatchNorm2D( num_channels_out, weight_attr=None, bias_attr=None, data_format='NCHW') self.act = F.relu if act == 'relu' else brelu def forward(self, x, x_len): """ x(Tensor): audio, shape [B, C, D, T] """ x = self.conv(x) x = self.bn(x) x = self.act(x) x_len = (x_len - self.kernel_size[1] + 2 * self.padding[1] ) // self.stride[1] + 1 # reset padding part to 0 masks = make_non_pad_mask(x_len) #[B, T] masks = masks.unsqueeze(1).unsqueeze(1) # [B, 1, 1, T] # https://github.com/PaddlePaddle/Paddle/pull/29265 # rhs will type promote to lhs x = x * masks return x, x_len class ConvStack(nn.Layer): """Convolution group with stacked convolution layers. :param feat_size: audio feature dim. :type feat_size: int :param num_stacks: Number of stacked convolution layers. :type num_stacks: int """ def __init__(self, feat_size, num_stacks): super().__init__() self.feat_size = feat_size # D self.num_stacks = num_stacks self.conv_in = ConvBn( num_channels_in=1, num_channels_out=32, kernel_size=(41, 11), #[D, T] stride=(2, 3), padding=(20, 5), act='brelu') out_channel = 32 convs = [ ConvBn( num_channels_in=32, num_channels_out=out_channel, kernel_size=(21, 11), stride=(2, 1), padding=(10, 5), act='brelu') for i in range(num_stacks - 1) ] self.conv_stack = nn.LayerList(convs) # conv output feat_dim output_height = (feat_size - 1) // 2 + 1 for i in range(self.num_stacks - 1): output_height = (output_height - 1) // 2 + 1 self.output_height = out_channel * output_height def forward(self, x, x_len): """ x: shape [B, C, D, T] x_len : shape [B] """ x, x_len = self.conv_in(x, x_len) for i, conv in enumerate(self.conv_stack): x, x_len = conv(x, x_len) return x, x_len