"""ASR Interface module.""" import argparse from deepspeech.utils.dynamic_import import dynamic_import class ASRInterface: """ASR Interface for ESPnet model implementation.""" @staticmethod def add_arguments(parser): """Add arguments to parser.""" return parser @classmethod def build(cls, idim: int, odim: int, **kwargs): """Initialize this class with python-level args. Args: idim (int): The number of an input feature dim. odim (int): The number of output vocab. Returns: ASRinterface: A new instance of ASRInterface. """ args = argparse.Namespace(**kwargs) return cls(idim, odim, args) def forward(self, xs, ilens, ys, olens): """Compute loss for training. :param xs: batch of padded source sequences paddle.Tensor (B, Tmax, idim) :param ilens: batch of lengths of source sequences (B), paddle.Tensor :param ys: batch of padded target sequences paddle.Tensor (B, Lmax) :param olens: batch of lengths of target sequences (B), paddle.Tensor :return: loss value :rtype: paddle.Tensor """ raise NotImplementedError("forward method is not implemented") def recognize(self, x, recog_args, char_list=None, rnnlm=None): """Recognize x for evaluation. :param ndarray x: input acouctic feature (B, T, D) or (T, D) :param namespace recog_args: argment namespace contraining options :param list char_list: list of characters :param paddle.nn.Layer rnnlm: language model module :return: N-best decoding results :rtype: list """ raise NotImplementedError("recognize method is not implemented") def recognize_batch(self, x, recog_args, char_list=None, rnnlm=None): """Beam search implementation for batch. :param paddle.Tensor x: encoder hidden state sequences (B, Tmax, Henc) :param namespace recog_args: argument namespace containing options :param list char_list: list of characters :param paddle.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list """ raise NotImplementedError("Batch decoding is not supported yet.") def calculate_all_attentions(self, xs, ilens, ys): """Calculate attention. :param list xs: list of padded input sequences [(T1, idim), (T2, idim), ...] :param ndarray ilens: batch of lengths of input sequences (B) :param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...] :return: attention weights (B, Lmax, Tmax) :rtype: float ndarray """ raise NotImplementedError("calculate_all_attentions method is not implemented") def calculate_all_ctc_probs(self, xs, ilens, ys): """Calculate CTC probability. :param list xs_pad: list of padded input sequences [(T1, idim), (T2, idim), ...] :param ndarray ilens: batch of lengths of input sequences (B) :param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...] :return: CTC probabilities (B, Tmax, vocab) :rtype: float ndarray """ raise NotImplementedError("calculate_all_ctc_probs method is not implemented") @property def attention_plot_class(self): """Get attention plot class.""" from espnet.asr.asr_utils import PlotAttentionReport return PlotAttentionReport @property def ctc_plot_class(self): """Get CTC plot class.""" from espnet.asr.asr_utils import PlotCTCReport return PlotCTCReport def get_total_subsampling_factor(self): """Get total subsampling factor.""" raise NotImplementedError( "get_total_subsampling_factor method is not implemented" ) def encode(self, feat): """Encode feature in `beam_search` (optional). Args: x (numpy.ndarray): input feature (T, D) Returns: paddle.Tensor: encoded feature (T, D) """ raise NotImplementedError("encode method is not implemented") def scorers(self): """Get scorers for `beam_search` (optional). Returns: dict[str, ScorerInterface]: dict of `ScorerInterface` objects """ raise NotImplementedError("decoders method is not implemented") predefined_asr = { "transformer": "deepspeech.models.u2:E2E", "conformer": "deepspeech.models.u2:E2E", } def dynamic_import_asr(module, name): """Import ASR models dynamically. Args: module (str): module_name:class_name or alias in `predefined_asr` name (str): asr name. e.g., transformer, conformer Returns: type: ASR class """ model_class = dynamic_import(module, predefined_asr.get(name, "")) assert issubclass( model_class, ASRInterface ), f"{module} does not implement ASRInterface" return model_class