# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from collections import OrderedDict import paddle from paddle import nn logger = logging.getLogger(__name__) __all__ = ["get_activation", "brelu", "LinearGLUBlock", "ConvGLUBlock"] def brelu(x, t_min=0.0, t_max=24.0, name=None): # paddle.to_tensor is dygraph_only can not work under JIT t_min = paddle.full(shape=[1], fill_value=t_min, dtype='float32') t_max = paddle.full(shape=[1], fill_value=t_max, dtype='float32') return x.maximum(t_min).minimum(t_max) class LinearGLUBlock(nn.Layer): """A linear Gated Linear Units (GLU) block.""" def __init__(self, idim: int): """ GLU. Args: idim (int): input and output dimension """ super().__init__() self.fc = nn.Linear(idim, idim * 2) def forward(self, xs): return glu(self.fc(xs), dim=-1) class ConvGLUBlock(nn.Layer): def __init__(self, kernel_size, in_ch, out_ch, bottlececk_dim=0, dropout=0.): """A convolutional Gated Linear Units (GLU) block. Args: kernel_size (int): kernel size in_ch (int): number of input channels out_ch (int): number of output channels bottlececk_dim (int): dimension of the bottleneck layers for computational efficiency. Defaults to 0. dropout (float): dropout probability. Defaults to 0.. """ super().__init__() self.conv_residual = None if in_ch != out_ch: self.conv_residual = nn.utils.weight_norm( nn.Conv2D( in_channels=in_ch, out_channels=out_ch, kernel_size=(1, 1)), name='weight', dim=0) self.dropout_residual = nn.Dropout(p=dropout) self.pad_left = ConstantPad2d((0, 0, kernel_size - 1, 0), 0) layers = OrderedDict() if bottlececk_dim == 0: layers['conv'] = nn.utils.weight_norm( nn.Conv2D( in_channels=in_ch, out_channels=out_ch * 2, kernel_size=(kernel_size, 1)), name='weight', dim=0) # TODO(hirofumi0810): padding? layers['dropout'] = nn.Dropout(p=dropout) layers['glu'] = GLU() elif bottlececk_dim > 0: layers['conv_in'] = nn.utils.weight_norm( nn.Conv2D( in_channels=in_ch, out_channels=bottlececk_dim, kernel_size=(1, 1)), name='weight', dim=0) layers['dropout_in'] = nn.Dropout(p=dropout) layers['conv_bottleneck'] = nn.utils.weight_norm( nn.Conv2D( in_channels=bottlececk_dim, out_channels=bottlececk_dim, kernel_size=(kernel_size, 1)), name='weight', dim=0) layers['dropout'] = nn.Dropout(p=dropout) layers['glu'] = GLU() layers['conv_out'] = nn.utils.weight_norm( nn.Conv2D( in_channels=bottlececk_dim, out_channels=out_ch * 2, kernel_size=(1, 1)), name='weight', dim=0) layers['dropout_out'] = nn.Dropout(p=dropout) self.layers = nn.Sequential(layers) def forward(self, xs): """Forward pass. Args: xs (FloatTensor): `[B, in_ch, T, feat_dim]` Returns: out (FloatTensor): `[B, out_ch, T, feat_dim]` """ residual = xs if self.conv_residual is not None: residual = self.dropout_residual(self.conv_residual(residual)) xs = self.pad_left(xs) # `[B, embed_dim, T+kernel-1, 1]` xs = self.layers(xs) # `[B, out_ch * 2, T ,1]` xs = xs + residual return xs def get_activation(act): """Return activation function.""" # Lazy load to avoid unused import activation_funcs = { "hardtanh": paddle.nn.Hardtanh, "tanh": paddle.nn.Tanh, "relu": paddle.nn.ReLU, "selu": paddle.nn.SELU, "swish": paddle.nn.Swish, "gelu": paddle.nn.GELU, "brelu": brelu, } return activation_funcs[act]()