"""Test augmentor class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from data_utils import audio from data_utils.augmentor.augmentation import AugmentationPipeline import random import numpy as np random_seed=0 #audio instance audio_data=[3.05175781e-05, -8.54492188e-04, -1.09863281e-03, -9.46044922e-04,\ -1.31225586e-03, -1.09863281e-03, -1.73950195e-03, -2.10571289e-03,\ -2.04467773e-03, -1.46484375e-03, -1.43432617e-03, -9.46044922e-04,\ -1.95312500e-03, -1.86157227e-03, -2.10571289e-03, -2.31933594e-03,\ -2.01416016e-03, -2.62451172e-03, -2.07519531e-03, -2.38037109e-03] audio_data = np.array(audio_data) samplerate = 10 class TestAugmentor(unittest.TestCase): def test_volume(self): augmentation_config='[{"type": "volume","params": {"min_gain_dBFS": -15, "max_gain_dBFS": 15},"prob": 1.0}]' augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, random_seed=random_seed) audio_segment = audio.AudioSegment(audio_data, samplerate) augmentation_pipeline.transform_audio(audio_segment) original_audio = audio.AudioSegment(audio_data, samplerate) self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) def test_speed(self): augmentation_config='[{"type": "speed","params": {"min_speed_rate": 1.2,"max_speed_rate": 1.4},"prob": 1.0}]' augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, random_seed=random_seed) audio_segment = audio.AudioSegment(audio_data, samplerate) augmentation_pipeline.transform_audio(audio_segment) original_audio = audio.AudioSegment(audio_data, samplerate) self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) def test_resample(self): augmentation_config='[{"type": "resample","params": {"new_sample_rate":5},"prob": 1.0}]' augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, random_seed=random_seed) audio_segment = audio.AudioSegment(audio_data, samplerate) augmentation_pipeline.transform_audio(audio_segment) self.assertTrue(audio_segment.sample_rate == 5) def test_bayesial(self): augmentation_config='[{"type": "bayesian_normal","params": {"target_db": -20, "prior_db": -4, "prior_samples": -8, "startup_delay": 0.0},"prob": 1.0}]' augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config, random_seed=random_seed) audio_segment = audio.AudioSegment(audio_data, samplerate) augmentation_pipeline.transform_audio(audio_segment) original_audio = audio.AudioSegment(audio_data, samplerate) self.assertFalse(np.any(audio_segment.samples == original_audio.samples)) if __name__ == '__main__': unittest.main()