//code is from: https://github.com/pytorch/audio/blob/main/torchaudio/csrc/sox/io.cpp #include "paddlespeech/audio/src/sox/effects.h" #include "paddlespeech/audio/src/sox/effects_chain.h" #include "paddlespeech/audio/src/sox/io.h" #include "paddlespeech/audio/src/sox/types.h" #include "paddlespeech/audio/src/sox/utils.h" using namespace paddleaudio::sox_utils; namespace paddleaudio { namespace sox_io { tl::optional get_info_file( const std::string& path, const tl::optional& format) { SoxFormat sf(sox_open_read( path.c_str(), /*signal=*/nullptr, /*encoding=*/nullptr, /*filetype=*/format.has_value() ? format.value().c_str() : nullptr)); if (static_cast(sf) == nullptr || sf->encoding.encoding == SOX_ENCODING_UNKNOWN) { return {}; } return std::forward_as_tuple( static_cast(sf->signal.rate), static_cast(sf->signal.length / sf->signal.channels), static_cast(sf->signal.channels), static_cast(sf->encoding.bits_per_sample), get_encoding(sf->encoding.encoding)); } std::vector> get_effects( const tl::optional& frame_offset, const tl::optional& num_frames) { const auto offset = frame_offset.value_or(0); if (offset < 0) { throw std::runtime_error( "Invalid argument: frame_offset must be non-negative."); } const auto frames = num_frames.value_or(-1); if (frames == 0 || frames < -1) { throw std::runtime_error( "Invalid argument: num_frames must be -1 or greater than 0."); } std::vector> effects; if (frames != -1) { std::ostringstream os_offset, os_frames; os_offset << offset << "s"; os_frames << "+" << frames << "s"; effects.emplace_back( std::vector{"trim", os_offset.str(), os_frames.str()}); } else if (offset != 0) { std::ostringstream os_offset; os_offset << offset << "s"; effects.emplace_back(std::vector{"trim", os_offset.str()}); } return effects; } tl::optional> load_audio_file( const std::string& path, const tl::optional& frame_offset, const tl::optional& num_frames, tl::optional normalize, tl::optional channels_first, const tl::optional& format) { auto effects = get_effects(frame_offset, num_frames); return paddleaudio::sox_effects::apply_effects_file( path, effects, normalize, channels_first, format); } void save_audio_file(const std::string& path, py::array tensor, int64_t sample_rate, bool channels_first, tl::optional compression, tl::optional format, tl::optional encoding, tl::optional bits_per_sample) { validate_input_tensor(tensor); const auto filetype = [&]() { if (format.has_value()) return format.value(); return get_filetype(path); }(); if (filetype == "amr-nb") { const auto num_channels = tensor.shape(channels_first ? 0 : 1); //TORCH_CHECK(num_channels == 1, // "amr-nb format only supports single channel audio."); } else if (filetype == "htk") { const auto num_channels = tensor.shape(channels_first ? 0 : 1); // TORCH_CHECK(num_channels == 1, // "htk format only supports single channel audio."); } else if (filetype == "gsm") { const auto num_channels = tensor.shape(channels_first ? 0 : 1); //TORCH_CHECK(num_channels == 1, // "gsm format only supports single channel audio."); //TORCH_CHECK(sample_rate == 8000, // "gsm format only supports a sampling rate of 8kHz."); } const auto signal_info = get_signalinfo(&tensor, sample_rate, filetype, channels_first); const auto encoding_info = get_encodinginfo_for_save( filetype, tensor.dtype(), compression, encoding, bits_per_sample); SoxFormat sf(sox_open_write(path.c_str(), &signal_info, &encoding_info, /*filetype=*/filetype.c_str(), /*oob=*/nullptr, /*overwrite_permitted=*/nullptr)); if (static_cast(sf) == nullptr) { throw std::runtime_error( "Error saving audio file: failed to open file " + path); } paddleaudio::sox_effects_chain::SoxEffectsChain chain( /*input_encoding=*/get_tensor_encodinginfo(tensor.dtype()), /*output_encoding=*/sf->encoding); chain.addInputTensor(&tensor, sample_rate, channels_first); chain.addOutputFile(sf); chain.run(); } } // namespace sox_io } // namespace paddleaudio