#!/bin/bash source path.sh set -e stage=0 stop_stage=100 conf_path=conf/conformer.yaml avg_num=20 source ${MAIN_ROOT}/utils/parse_options.sh || exit 1; avg_ckpt=avg_${avg_num} ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}') echo "checkpoint name ${ckpt}" if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # prepare data bash ./local/data.sh || exit -1 fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # train model, all `ckpt` under `exp` dir CUDA_VISIBLE_DEVICES=0,1,2,3 ./local/train.sh ${conf_path} ${ckpt} fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # avg n best model avg.sh best exp/${ckpt}/checkpoints ${avg_num} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # test ckpt avg_n CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1 fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # ctc alignment of test data CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1 fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # export ckpt avg_n CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit fi # Optionally, you can add LM and test it with runtime. if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # train lm and build TLG ./local/tlg.sh --corpus aishell --lmtype srilm fi