# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Union from typeguard import check_argument_types from paddle.optimizer.lr import LRScheduler logger = logging.getLogger(__name__) __all__ = ["WarmupLR"] class WarmupLR(LRScheduler): """The WarmupLR scheduler This scheduler is almost same as NoamLR Scheduler except for following difference: NoamLR: lr = optimizer.lr * model_size ** -0.5 * min(step ** -0.5, step * warmup_step ** -1.5) WarmupLR: lr = optimizer.lr * warmup_step ** 0.5 * min(step ** -0.5, step * warmup_step ** -1.5) Note that the maximum lr equals to optimizer.lr in this scheduler. """ def __init__(self, warmup_steps: Union[int, float]=25000, learning_rate=1.0, last_epoch=-1, verbose=False): assert check_argument_types() self.warmup_steps = warmup_steps super().__init__(learning_rate, last_epoch, verbose) def __repr__(self): return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" def get_lr(self): step_num = self.last_epoch + 1 return self.base_lr * self.warmup_steps**0.5 * min( step_num**-0.5, step_num * self.warmup_steps**-1.5) def set_step(self, step: int): self.step(step)