# TTS(Text To Speech) ## Introduction Text-to-speech (TTS) is a natural language modeling process that requires changing units of text into units of speech for audio presentation. This demo is an implementation to generate an audio from the giving text. It can be done by a single command or a few lines in python using `PaddleSpeech`. ## Usage ### 1. Installation ```bash pip install paddlespeech ``` ### 2. Prepare Input Input of this demo should be a text of the specific language that can be passed via argument. ### 3. Usage - Command Line(Recommended) ```bash paddlespeech tts --input 今天的天气不错啊 ``` Usage: ```bash paddlespeech tts --help ``` Arguments: - `input`(required): Input text to generate.. - `am`: Acoustic model type of tts task. Default: `fastspeech2_csmsc`. - `am_config`: Config of acoustic model. Use deault config when it is None. Default: `None`. - `am_ckpt`: Acoustic model checkpoint. Use pretrained model when it is None. Default: `None`. - `am_stat`: Mean and standard deviation used to normalize spectrogram when training acoustic model. Default: `None`. - `phones_dict`: Phone vocabulary file. Default: `None`. - `tones_dict`: Tone vocabulary file. Default: `None`. - `speaker_dict`: speaker id map file. Default: `None`. - `spk_id`: Speaker id for multi speaker acoustic model. Default: `0`. - `voc`: Vocoder type of tts task. Default: `pwgan_csmsc`. - `voc_config`: Config of vocoder. Use deault config when it is None. Default: `None`. - `voc_ckpt`: Vocoder checkpoint. Use pretrained model when it is None. Default: `None`. - `voc_stat`: Mean and standard deviation used to normalize spectrogram when training vocoder. Default: `None`. - `lang`: Language of tts task. Default: `zh`. - `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment. - `output`: Output wave filepath. Default: `output.wav`. Output: ```bash [2021-12-09 20:49:58,955] [ INFO] [log.py] [L57] - Wave file has been generated: output.wav ``` - Python API ```python import paddle from paddlespeech.cli import TTSExecutor tts_executor = TTSExecutor() wav_file = tts_executor( text='今天的天气不错啊', output='output.wav', am='fastspeech2_csmsc', am_config=None, am_ckpt=None, am_stat=None, spk_id=0, phones_dict=None, tones_dict=None, speaker_dict=None, voc='pwgan_csmsc', voc_config=None, voc_ckpt=None, voc_stat=None, lang='zh', device=paddle.get_device()) print('Wave file has been generated: {}'.format(wav_file)) ``` Output: ```bash Wave file has been generated: output.wav ``` ### 4.Pretrained Models Here is a list of pretrained models released by PaddleSpeech that can be used by command and python api: - Acoustic model | Model | Language | :--- | :---: | | speedyspeech_csmsc| zh | fastspeech2_csmsc| zh | fastspeech2_aishell3| zh | fastspeech2_ljspeech| en | fastspeech2_vctk| en - Vocoder | Model | Language | :--- | :---: | | pwgan_csmsc| zh | pwgan_aishell3| zh | pwgan_ljspeech| en | pwgan_vctk| en | mb_melgan_csmsc| zh