#!/bin/bash set -x set -e . path.sh # 1. compile if [ ! -d ${SPEECHX_EXAMPLES} ]; then pushd ${SPEECHX_ROOT} bash build.sh popd fi # 2. download model if [ ! -f data/model/asr1_chunk_conformer_u2pp_wenetspeech_static_1.1.0.model.tar.gz ]; then mkdir -p data/model pushd data/model wget -c https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/static/asr1_chunk_conformer_u2pp_wenetspeech_static_1.1.0.model.tar.gz tar xzfv asr1_chunk_conformer_u2pp_wenetspeech_static_1.1.0.model.tar.gz popd fi # produce wav scp if [ ! -f data/wav.scp ]; then mkdir -p data pushd data wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav echo "utt1 " $PWD/zh.wav > wav.scp popd fi data=data exp=exp mkdir -p $exp ckpt_dir=./data/model model_dir=$ckpt_dir/asr1_chunk_conformer_u2pp_wenetspeech_static_1.1.0.model/ cmvn_json2kaldi_main \ --json_file $model_dir/mean_std.json \ --cmvn_write_path $exp/cmvn.ark \ --binary=false echo "convert json cmvn to kaldi ark." compute_fbank_main \ --num_bins 80 \ --wav_rspecifier=scp:$data/wav.scp \ --cmvn_file=$exp/cmvn.ark \ --feature_wspecifier=ark,t:$exp/fbank.ark echo "compute fbank feature." u2_nnet_main \ --model_path=$model_dir/export.jit \ --feature_rspecifier=ark,t:$exp/fbank.ark \ --nnet_decoder_chunk=16 \ --receptive_field_length=7 \ --downsampling_rate=4 \ --acoustic_scale=1.0 \ --nnet_encoder_outs_wspecifier=ark,t:$exp/encoder_outs.ark \ --nnet_prob_wspecifier=ark,t:$exp/logprobs.ark echo "u2 nnet decode."