# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import io import librosa import numpy as np import paddle import soundfile as sf from scipy.io import wavfile from paddlespeech.cli.log import logger from paddlespeech.cli.tts.infer import TTSExecutor from paddlespeech.server.engine.base_engine import BaseEngine from paddlespeech.server.utils.audio_process import change_speed from paddlespeech.server.utils.config import get_config from paddlespeech.server.utils.errors import ErrorCode from paddlespeech.server.utils.exception import ServerBaseException __all__ = ['TTSEngine'] class TTSServerExecutor(TTSExecutor): def __init__(self): super().__init__() pass class TTSEngine(BaseEngine): """TTS server engine Args: metaclass: Defaults to Singleton. """ def __init__(self, name=None): """Initialize TTS server engine """ super(TTSEngine, self).__init__() def init(self, config_file: str) -> bool: self.executor = TTSServerExecutor() try: self.config = get_config(config_file) if self.config.device is None: paddle.set_device(paddle.get_device()) else: paddle.set_device(self.config.device) self.executor._init_from_path( am=self.config.am, am_config=self.config.am_config, am_ckpt=self.config.am_ckpt, am_stat=self.config.am_stat, phones_dict=self.config.phones_dict, tones_dict=self.config.tones_dict, speaker_dict=self.config.speaker_dict, voc=self.config.voc, voc_config=self.config.voc_config, voc_ckpt=self.config.voc_ckpt, voc_stat=self.config.voc_stat, lang=self.config.lang) except: logger.info("Initialize TTS server engine Failed.") return False logger.info("Initialize TTS server engine successfully.") return True def postprocess(self, wav, original_fs: int, target_fs: int=16000, volume: float=1.0, speed: float=1.0, audio_path: str=None): """Post-processing operations, including speech, volume, sample rate, save audio file Args: wav (numpy(float)): Synthesized audio sample points original_fs (int): original audio sample rate target_fs (int): target audio sample rate volume (float): target volume speed (float): target speed Raises: ServerBaseException: Throws an exception if the change speed unsuccessfully. Returns: target_fs: target sample rate for synthesized audio. wav_base64: The base64 format of the synthesized audio. """ # transform sample_rate if target_fs == 0 or target_fs > original_fs: target_fs = original_fs wav_tar_fs = wav else: wav_tar_fs = librosa.resample( np.squeeze(wav), original_fs, target_fs) # transform volume wav_vol = wav_tar_fs * volume # transform speed try: # windows not support soxbindings wav_speed = change_speed(wav_vol, speed, target_fs) except: raise ServerBaseException( ErrorCode.SERVER_INTERNAL_ERR, "Can not install soxbindings on your system.") # wav to base64 buf = io.BytesIO() wavfile.write(buf, target_fs, wav_speed) base64_bytes = base64.b64encode(buf.read()) wav_base64 = base64_bytes.decode('utf-8') # save audio if audio_path is not None and audio_path.endswith(".wav"): sf.write(audio_path, wav_speed, target_fs) elif audio_path is not None and audio_path.endswith(".pcm"): wav_norm = wav_speed * (32767 / max(0.001, np.max(np.abs(wav_speed)))) with open(audio_path, "wb") as f: f.write(wav_norm.astype(np.int16)) return target_fs, wav_base64 def run(self, sentence: str, spk_id: int=0, speed: float=1.0, volume: float=1.0, sample_rate: int=0, save_path: str=None): """ run include inference and postprocess. Args: sentence (str): text to be synthesized spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0. speed (float, optional): speed. Defaults to 1.0. volume (float, optional): volume. Defaults to 1.0. sample_rate (int, optional): target sample rate for synthesized audio, 0 means the same as the model sampling rate. Defaults to 0. save_path (str, optional): The save path of the synthesized audio. None means do not save audio. Defaults to None. Raises: ServerBaseException: Throws an exception if tts inference unsuccessfully. ServerBaseException: Throws an exception if postprocess unsuccessfully. Returns: lang: model language target_sample_rate: target sample rate for synthesized audio. wav_base64: The base64 format of the synthesized audio. """ lang = self.config.lang try: self.executor.infer( text=sentence, lang=lang, am=self.config.am, spk_id=spk_id) except: raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR, "tts infer failed.") try: target_sample_rate, wav_base64 = self.postprocess( wav=self.executor._outputs['wav'].numpy(), original_fs=self.executor.am_config.fs, target_fs=sample_rate, volume=volume, speed=speed, audio_path=save_path) except: raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR, "tts postprocess failed.") return lang, target_sample_rate, wav_base64