# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """Encoder self-attention layer definition.""" import paddle from paddle import nn class EncoderLayer(nn.Layer): """Encoder layer module. Parameters ---------- size : int Input dimension. self_attn : paddle.nn.Layer Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. feed_forward : paddle.nn.Layer Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. dropout_rate : float Dropout rate. normalize_before : bool Whether to use layer_norm before the first block. concat_after : bool Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, ): """Construct an EncoderLayer object.""" super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.norm1 = nn.LayerNorm(size) self.norm2 = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size, bias_attr=True) def forward(self, x, mask, cache=None): """Compute encoded features. Parameters ---------- x_input : paddle.Tensor Input tensor (#batch, time, size). mask : paddle.Tensor Mask tensor for the input (#batch, time). cache : paddle.Tensor Cache tensor of the input (#batch, time - 1, size). Returns ---------- paddle.Tensor Output tensor (#batch, time, size). paddle.Tensor Mask tensor (#batch, time). """ residual = x if self.normalize_before: x = self.norm1(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if self.concat_after: x_concat = paddle.concat( (x, self.self_attn(x_q, x, x, mask)), axis=-1) x = residual + self.concat_linear(x_concat) else: x = residual + self.dropout(self.self_attn(x_q, x, x, mask)) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm2(x) if cache is not None: x = paddle.concat([cache, x], axis=1) return x, mask