# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import ast import os import re from collections import OrderedDict from typing import List from typing import Optional from typing import Union import paddle from ...s2t.utils.dynamic_import import dynamic_import from ..executor import BaseExecutor from ..log import logger from ..utils import cli_register from ..utils import download_and_decompress from ..utils import MODEL_HOME from ..utils import stats_wrapper __all__ = ['TextExecutor'] pretrained_models = { # The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]". # e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k". # Command line and python api use "{model_name}[_{dataset}]" as --model, usage: # "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav" "ernie_linear_p7_wudao-punc-zh": { 'url': 'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p7_wudao-punc-zh.tar.gz', 'md5': '12283e2ddde1797c5d1e57036b512746', 'cfg_path': 'ckpt/model_config.json', 'ckpt_path': 'ckpt/model_state.pdparams', 'vocab_file': 'punc_vocab.txt', }, "ernie_linear_p3_wudao-punc-zh": { 'url': 'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_wudao-punc-zh.tar.gz', 'md5': '448eb2fdf85b6a997e7e652e80c51dd2', 'cfg_path': 'ckpt/model_config.json', 'ckpt_path': 'ckpt/model_state.pdparams', 'vocab_file': 'punc_vocab.txt', }, } model_alias = { "ernie_linear_p7": "paddlespeech.text.models:ErnieLinear", "ernie_linear_p3": "paddlespeech.text.models:ErnieLinear", } tokenizer_alias = { "ernie_linear_p7": "paddlenlp.transformers:ErnieTokenizer", "ernie_linear_p3": "paddlenlp.transformers:ErnieTokenizer", } @cli_register(name='paddlespeech.text', description='Text infer command.') class TextExecutor(BaseExecutor): def __init__(self): super(TextExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech.text', add_help=True) self.parser.add_argument( '--input', type=str, default=None, help='Input text.') self.parser.add_argument( '--task', type=str, default='punc', choices=['punc'], help='Choose text task.') self.parser.add_argument( '--model', type=str, default='ernie_linear_p7_wudao', choices=[tag[:tag.index('-')] for tag in pretrained_models.keys()], help='Choose model type of text task.') self.parser.add_argument( '--lang', type=str, default='zh', choices=['zh', 'en'], help='Choose model language.') self.parser.add_argument( '--config', type=str, default=None, help='Config of cls task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--punc_vocab', type=str, default=None, help='Vocabulary file of punctuation restoration task.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') self.parser.add_argument( '--job_dump_result', type=ast.literal_eval, default=False, help='Save job result into file.') def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ support_models = list(pretrained_models.keys()) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format( tag, '\n\t\t'.join(support_models)) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def _init_from_path(self, task: str='punc', model_type: str='ernie_linear_p7_wudao', lang: str='zh', cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, vocab_file: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return self.task = task if cfg_path is None or ckpt_path is None or vocab_file is None: tag = '-'.join([model_type, task, lang]) self.res_path = self._get_pretrained_path(tag) self.cfg_path = os.path.join(self.res_path, pretrained_models[tag]['cfg_path']) self.ckpt_path = os.path.join(self.res_path, pretrained_models[tag]['ckpt_path']) self.vocab_file = os.path.join(self.res_path, pretrained_models[tag]['vocab_file']) else: self.cfg_path = os.path.abspath(cfg_path) self.ckpt_path = os.path.abspath(ckpt_path) self.vocab_file = os.path.abspath(vocab_file) model_name = model_type[:model_type.rindex('_')] if self.task == 'punc': # punc list self._punc_list = [] with open(self.vocab_file, 'r') as f: for line in f: self._punc_list.append(line.strip()) # model model_class = dynamic_import(model_name, model_alias) tokenizer_class = dynamic_import(model_name, tokenizer_alias) self.model = model_class( cfg_path=self.cfg_path, ckpt_path=self.ckpt_path) self.tokenizer = tokenizer_class.from_pretrained('ernie-1.0') else: raise NotImplementedError self.model.eval() def _clean_text(self, text): text = text.lower() text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text) text = re.sub(f'[{"".join([p for p in self._punc_list][1:])}]', '', text) return text def preprocess(self, text: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ if self.task == 'punc': clean_text = self._clean_text(text) assert len(clean_text) > 0, f'Invalid input string: {text}' tokenized_input = self.tokenizer( list(clean_text), return_length=True, is_split_into_words=True) self._inputs['input_ids'] = tokenized_input['input_ids'] self._inputs['seg_ids'] = tokenized_input['token_type_ids'] self._inputs['seq_len'] = tokenized_input['seq_len'] else: raise NotImplementedError @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ if self.task == 'punc': input_ids = paddle.to_tensor(self._inputs['input_ids']).unsqueeze(0) seg_ids = paddle.to_tensor(self._inputs['seg_ids']).unsqueeze(0) logits, _ = self.model(input_ids, seg_ids) preds = paddle.argmax(logits, axis=-1).squeeze(0) self._outputs['preds'] = preds else: raise NotImplementedError def postprocess(self) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ if self.task == 'punc': input_ids = self._inputs['input_ids'] seq_len = self._inputs['seq_len'] preds = self._outputs['preds'] tokens = self.tokenizer.convert_ids_to_tokens( input_ids[1:seq_len - 1]) labels = preds[1:seq_len - 1].tolist() assert len(tokens) == len(labels) text = '' for t, l in zip(tokens, labels): text += t if l != 0: # Non punc. text += self._punc_list[l] return text else: raise NotImplementedError def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) task = parser_args.task model_type = parser_args.model lang = parser_args.lang cfg_path = parser_args.config ckpt_path = parser_args.ckpt_path punc_vocab = parser_args.punc_vocab device = parser_args.device job_dump_result = parser_args.job_dump_result task_source = self.get_task_source(parser_args.input) task_results = OrderedDict() has_exceptions = False for id_, input_ in task_source.items(): try: res = self(input_, task, model_type, lang, cfg_path, ckpt_path, punc_vocab, device) task_results[id_] = res except Exception as e: has_exceptions = True task_results[id_] = f'{e.__class__.__name__}: {e}' self.process_task_results(parser_args.input, task_results, job_dump_result) if has_exceptions: return False else: return True @stats_wrapper def __call__( self, text: str, task: str='punc', model: str='ernie_linear_p7_wudao', lang: str='zh', config: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None, punc_vocab: Optional[os.PathLike]=None, device: str=paddle.get_device(), ): """ Python API to call an executor. """ paddle.set_device(device) self._init_from_path(task, model, lang, config, ckpt_path, punc_vocab) self.preprocess(text) self.infer() res = self.postprocess() # Retrieve result of text task. return res