# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Positonal Encoding Module.""" import math from typing import Tuple import paddle from paddle import nn from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = ["PositionalEncoding", "RelPositionalEncoding"] class PositionalEncoding(nn.Layer): def __init__(self, d_model: int, dropout_rate: float, max_len: int=5000, reverse: bool=False): """Positional encoding. PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) Args: d_model (int): embedding dim. dropout_rate (float): dropout rate. max_len (int, optional): maximum input length. Defaults to 5000. reverse (bool, optional): Not used. Defaults to False. """ super().__init__() self.d_model = d_model self.max_len = max_len self.xscale = paddle.to_tensor(math.sqrt(self.d_model)) self.dropout = nn.Dropout(p=dropout_rate) self.pe = paddle.zeros([self.max_len, self.d_model]) #[T,D] position = paddle.arange( 0, self.max_len, dtype=paddle.float32).unsqueeze(1) #[T, 1] div_term = paddle.exp( paddle.arange(0, self.d_model, 2, dtype=paddle.float32) * -(math.log(10000.0) / self.d_model)) self.pe[:, 0::2] = paddle.sin(position * div_term) self.pe[:, 1::2] = paddle.cos(position * div_term) self.pe = self.pe.unsqueeze(0) #[1, T, D] def forward(self, x: paddle.Tensor, offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]: """Add positional encoding. Args: x (paddle.Tensor): Input. Its shape is (batch, time, ...) offset (int): position offset Returns: paddle.Tensor: Encoded tensor. Its shape is (batch, time, ...) paddle.Tensor: for compatibility to RelPositionalEncoding, (batch=1, time, ...) """ T = x.shape[1] assert offset + x.size(1) < self.max_len #TODO(Hui Zhang): using T = x.size(1), __getitem__ not support Tensor pos_emb = self.pe[:, offset:offset + T] x = x * self.xscale + pos_emb return self.dropout(x), self.dropout(pos_emb) def position_encoding(self, offset: int, size: int) -> paddle.Tensor: """ For getting encoding in a streaming fashion Attention!!!!! we apply dropout only once at the whole utterance level in a none streaming way, but will call this function several times with increasing input size in a streaming scenario, so the dropout will be applied several times. Args: offset (int): start offset size (int): requried size of position encoding Returns: paddle.Tensor: Corresponding encoding """ assert offset + size < self.max_len return self.dropout(self.pe[:, offset:offset + size]) class RelPositionalEncoding(PositionalEncoding): """Relative positional encoding module. See : Appendix B in https://arxiv.org/abs/1901.02860 """ def __init__(self, d_model: int, dropout_rate: float, max_len: int=5000): """ Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int, optional): [Maximum input length.]. Defaults to 5000. """ super().__init__(d_model, dropout_rate, max_len, reverse=True) def forward(self, x: paddle.Tensor, offset: int=0) -> Tuple[paddle.Tensor, paddle.Tensor]: """Compute positional encoding. Args: x (paddle.Tensor): Input tensor (batch, time, `*`). Returns: paddle.Tensor: Encoded tensor (batch, time, `*`). paddle.Tensor: Positional embedding tensor (1, time, `*`). """ assert offset + x.shape[1] < self.max_len x = x * self.xscale #TODO(Hui Zhang): using x.size(1), __getitem__ not support Tensor pos_emb = self.pe[:, offset:offset + x.shape[1]] return self.dropout(x), self.dropout(pos_emb)