# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import io import os import sys from typing import List from typing import Optional from typing import Union import librosa import numpy as np import paddle import soundfile import yaml from yacs.config import CfgNode from ..executor import BaseExecutor from ..utils import cli_register from ..utils import download_and_decompress from ..utils import logger from ..utils import MODEL_HOME from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.transform.transformation import Transformation from paddlespeech.s2t.utils.dynamic_import import dynamic_import from paddlespeech.s2t.utils.utility import UpdateConfig __all__ = ['ASRExecutor'] pretrained_models = { # The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]". # e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k". # Command line and python api use "{model_name}[_{dataset}]" as --model, usage: # "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav" "conformer_wenetspeech-zh-16k": { 'url': 'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz', 'md5': '54e7a558a6e020c2f5fb224874943f97', 'cfg_path': 'conf/conformer.yaml', 'ckpt_path': 'exp/conformer/checkpoints/wenetspeech', }, "transformer_aishell-zh-16k": { 'url': 'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/transformer.model.tar.gz', 'md5': '4e8b63800c71040b9390b150e2a5d4c4', 'cfg_path': 'conf/transformer.yaml', 'ckpt_path': 'exp/transformer/checkpoints/avg_20', } } model_alias = { "ds2_offline": "paddlespeech.s2t.models.ds2:DeepSpeech2Model", "ds2_online": "paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline", "conformer": "paddlespeech.s2t.models.u2:U2Model", "transformer": "paddlespeech.s2t.models.u2:U2Model", "wenetspeech": "paddlespeech.s2t.models.u2:U2Model", } @cli_register( name='paddlespeech.asr', description='Speech to text infer command.') class ASRExecutor(BaseExecutor): def __init__(self): super(ASRExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech.asr', add_help=True) self.parser.add_argument( '--input', type=str, required=True, help='Audio file to recognize.') self.parser.add_argument( '--model', type=str, default='conformer_wenetspeech', choices=[tag[:tag.index('-')] for tag in pretrained_models.keys()], help='Choose model type of asr task.') self.parser.add_argument( '--lang', type=str, default='zh', help='Choose model language. zh or en') self.parser.add_argument( "--sample_rate", type=int, default=16000, choices=[8000, 16000], help='Choose the audio sample rate of the model. 8000 or 16000') self.parser.add_argument( '--config', type=str, default=None, help='Config of asr task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( tag) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def _init_from_path(self, model_type: str='wenetspeech', lang: str='zh', sample_rate: int=16000, cfg_path: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return if cfg_path is None or ckpt_path is None: sample_rate_str = '16k' if sample_rate == 16000 else '8k' tag = model_type + '-' + lang + '-' + sample_rate_str res_path = self._get_pretrained_path(tag) # wenetspeech_zh self.res_path = res_path self.cfg_path = os.path.join(res_path, pretrained_models[tag]['cfg_path']) self.ckpt_path = os.path.join( res_path, pretrained_models[tag]['ckpt_path'] + ".pdparams") logger.info(res_path) logger.info(self.cfg_path) logger.info(self.ckpt_path) else: self.cfg_path = os.path.abspath(cfg_path) self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams") res_path = os.path.dirname( os.path.dirname(os.path.abspath(self.cfg_path))) #Init body. self.config = CfgNode(new_allowed=True) self.config.merge_from_file(self.cfg_path) self.config.decoding.decoding_method = "attention_rescoring" with UpdateConfig(self.config): if "ds2_online" in model_type or "ds2_offline" in model_type: from paddlespeech.s2t.io.collator import SpeechCollator self.config.collator.vocab_filepath = os.path.join( res_path, self.config.collator.vocab_filepath) self.config.collator.mean_std_filepath = os.path.join( res_path, self.config.collator.cmvn_path) self.collate_fn_test = SpeechCollator.from_config(self.config) text_feature = TextFeaturizer( unit_type=self.config.collator.unit_type, vocab_filepath=self.config.collator.vocab_filepath, spm_model_prefix=self.config.collator.spm_model_prefix) self.config.model.input_dim = self.collate_fn_test.feature_size self.config.model.output_dim = text_feature.vocab_size elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type: self.config.collator.vocab_filepath = os.path.join( res_path, self.config.collator.vocab_filepath) self.config.collator.augmentation_config = os.path.join( res_path, self.config.collator.augmentation_config) self.config.collator.spm_model_prefix = os.path.join( res_path, self.config.collator.spm_model_prefix) text_feature = TextFeaturizer( unit_type=self.config.collator.unit_type, vocab_filepath=self.config.collator.vocab_filepath, spm_model_prefix=self.config.collator.spm_model_prefix) self.config.model.input_dim = self.config.collator.feat_dim self.config.model.output_dim = text_feature.vocab_size else: raise Exception("wrong type") # Enter the path of model root model_name = model_type[:model_type.rindex( '_')] # model_type: {model_name}_{dataset} model_class = dynamic_import(model_name, model_alias) model_conf = self.config.model logger.info(model_conf) model = model_class.from_config(model_conf) self.model = model self.model.eval() # load model model_dict = paddle.load(self.ckpt_path) self.model.set_state_dict(model_dict) def preprocess(self, model_type: str, input: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ audio_file = input logger.info("Preprocess audio_file:" + audio_file) # Get the object for feature extraction if "ds2_online" in model_type or "ds2_offline" in model_type: audio, _ = self.collate_fn_test.process_utterance( audio_file=audio_file, transcript=" ") audio_len = audio.shape[0] audio = paddle.to_tensor(audio, dtype='float32') audio_len = paddle.to_tensor(audio_len) audio = paddle.unsqueeze(audio, axis=0) vocab_list = collate_fn_test.vocab_list self._inputs["audio"] = audio self._inputs["audio_len"] = audio_len logger.info(f"audio feat shape: {audio.shape}") elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type: logger.info("get the preprocess conf") preprocess_conf_file = self.config.collator.augmentation_config # redirect the cmvn path with io.open(preprocess_conf_file, encoding="utf-8") as f: preprocess_conf = yaml.safe_load(f) for idx, process in enumerate(preprocess_conf["process"]): if process['type'] == "cmvn_json": preprocess_conf["process"][idx][ "cmvn_path"] = os.path.join( self.res_path, preprocess_conf["process"][idx]["cmvn_path"]) break logger.info(preprocess_conf) preprocess_args = {"train": False} preprocessing = Transformation(preprocess_conf) logger.info("read the audio file") audio, audio_sample_rate = soundfile.read( audio_file, dtype="int16", always_2d=True) if self.change_format: if audio.shape[1] >= 2: audio = audio.mean(axis=1, dtype=np.int16) else: audio = audio[:, 0] # pcm16 -> pcm 32 audio = self._pcm16to32(audio) audio = librosa.resample(audio, audio_sample_rate, self.sample_rate) audio_sample_rate = self.sample_rate # pcm32 -> pcm 16 audio = self._pcm32to16(audio) else: audio = audio[:, 0] logger.info(f"audio shape: {audio.shape}") # fbank audio = preprocessing(audio, **preprocess_args) audio_len = paddle.to_tensor(audio.shape[0]) audio = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0) text_feature = TextFeaturizer( unit_type=self.config.collator.unit_type, vocab_filepath=self.config.collator.vocab_filepath, spm_model_prefix=self.config.collator.spm_model_prefix) self._inputs["audio"] = audio self._inputs["audio_len"] = audio_len logger.info(f"audio feat shape: {audio.shape}") else: raise Exception("wrong type") @paddle.no_grad() def infer(self, model_type: str): """ Model inference and result stored in self.output. """ text_feature = TextFeaturizer( unit_type=self.config.collator.unit_type, vocab_filepath=self.config.collator.vocab_filepath, spm_model_prefix=self.config.collator.spm_model_prefix) cfg = self.config.decoding audio = self._inputs["audio"] audio_len = self._inputs["audio_len"] if "ds2_online" in model_type or "ds2_offline" in model_type: result_transcripts = self.model.decode( audio, audio_len, text_feature.vocab_list, decoding_method=cfg.decoding_method, lang_model_path=cfg.lang_model_path, beam_alpha=cfg.alpha, beam_beta=cfg.beta, beam_size=cfg.beam_size, cutoff_prob=cfg.cutoff_prob, cutoff_top_n=cfg.cutoff_top_n, num_processes=cfg.num_proc_bsearch) self._outputs["result"] = result_transcripts[0] elif "conformer" in model_type or "transformer" in model_type: result_transcripts = self.model.decode( audio, audio_len, text_feature=text_feature, decoding_method=cfg.decoding_method, lang_model_path=cfg.lang_model_path, beam_alpha=cfg.alpha, beam_beta=cfg.beta, beam_size=cfg.beam_size, cutoff_prob=cfg.cutoff_prob, cutoff_top_n=cfg.cutoff_top_n, num_processes=cfg.num_proc_bsearch, ctc_weight=cfg.ctc_weight, decoding_chunk_size=cfg.decoding_chunk_size, num_decoding_left_chunks=cfg.num_decoding_left_chunks, simulate_streaming=cfg.simulate_streaming) self._outputs["result"] = result_transcripts[0][0] else: raise Exception("invalid model name") def postprocess(self) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ return self._outputs["result"] def _pcm16to32(self, audio): assert (audio.dtype == np.int16) audio = audio.astype("float32") bits = np.iinfo(np.int16).bits audio = audio / (2**(bits - 1)) return audio def _pcm32to16(self, audio): assert (audio.dtype == np.float32) bits = np.iinfo(np.int16).bits audio = audio * (2**(bits - 1)) audio = np.round(audio).astype("int16") return audio def _check(self, audio_file: str, sample_rate: int): self.sample_rate = sample_rate if self.sample_rate != 16000 and self.sample_rate != 8000: logger.error("please input --sr 8000 or --sr 16000") raise Exception("invalid sample rate") sys.exit(-1) if not os.path.isfile(audio_file): logger.error("Please input the right audio file path") sys.exit(-1) logger.info("checking the audio file format......") try: audio, audio_sample_rate = soundfile.read( audio_file, dtype="int16", always_2d=True) except Exception as e: logger.exception(e) logger.error( "can not open the audio file, please check the audio file format is 'wav'. \n \ you can try to use sox to change the file format.\n \ For example: \n \ sample rate: 16k \n \ sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \ sample rate: 8k \n \ sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \ ") sys.exit(-1) logger.info("The sample rate is %d" % audio_sample_rate) if audio_sample_rate != self.sample_rate: logger.warning("The sample rate of the input file is not {}.\n \ The program will resample the wav file to {}.\n \ If the result does not meet your expectations,\n \ Please input the 16k 16 bit 1 channel wav file. \ ".format(self.sample_rate, self.sample_rate)) while (True): logger.info( "Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream." ) content = input("Input(Y/N):") if content.strip() == "Y" or content.strip( ) == "y" or content.strip() == "yes" or content.strip() == "Yes": logger.info( "change the sampele rate, channel to 16k and 1 channel") break elif content.strip() == "N" or content.strip( ) == "n" or content.strip() == "no" or content.strip() == "No": logger.info("Exit the program") exit(1) else: logger.warning("Not regular input, please input again") self.change_format = True else: logger.info("The audio file format is right") self.change_format = False def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) model = parser_args.model lang = parser_args.lang sample_rate = parser_args.sample_rate config = parser_args.config ckpt_path = parser_args.ckpt_path audio_file = parser_args.input device = parser_args.device try: res = self(model, lang, sample_rate, config, ckpt_path, audio_file, device) logger.info('ASR Result: {}'.format(res)) return True except Exception as e: logger.exception(e) return False def __call__(self, model, lang, sample_rate, config, ckpt_path, audio_file, device): """ Python API to call an executor. """ audio_file = os.path.abspath(audio_file) self._check(audio_file, sample_rate) paddle.set_device(device) self._init_from_path(model, lang, sample_rate, config, ckpt_path) self.preprocess(model, audio_file) self.infer(model) res = self.postprocess() # Retrieve result of asr. return res