"""Inferer for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import distutils.util import multiprocessing import paddle.v2 as paddle from data_utils.data import DataGenerator from model import DeepSpeech2Model from error_rate import wer import utils parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--num_samples", default=10, type=int, help="Number of samples for inference. (default: %(default)s)") parser.add_argument( "--num_conv_layers", default=2, type=int, help="Convolution layer number. (default: %(default)s)") parser.add_argument( "--num_rnn_layers", default=3, type=int, help="RNN layer number. (default: %(default)s)") parser.add_argument( "--rnn_layer_size", default=512, type=int, help="RNN layer cell number. (default: %(default)s)") parser.add_argument( "--use_gpu", default=True, type=distutils.util.strtobool, help="Use gpu or not. (default: %(default)s)") parser.add_argument( "--num_threads_data", default=1, type=int, help="Number of cpu threads for preprocessing data. (default: %(default)s)") parser.add_argument( "--num_processes_beam_search", default=multiprocessing.cpu_count(), type=int, help="Number of cpu processes for beam search. (default: %(default)s)") parser.add_argument( "--specgram_type", default='linear', type=str, help="Feature type of audio data: 'linear' (power spectrum)" " or 'mfcc'. (default: %(default)s)") parser.add_argument( "--trainer_count", default=8, type=int, help="Trainer number. (default: %(default)s)") parser.add_argument( "--mean_std_filepath", default='mean_std.npz', type=str, help="Manifest path for normalizer. (default: %(default)s)") parser.add_argument( "--decode_manifest_path", default='datasets/manifest.test', type=str, help="Manifest path for decoding. (default: %(default)s)") parser.add_argument( "--model_filepath", default='checkpoints/params.latest.tar.gz', type=str, help="Model filepath. (default: %(default)s)") parser.add_argument( "--vocab_filepath", default='datasets/vocab/eng_vocab.txt', type=str, help="Vocabulary filepath. (default: %(default)s)") parser.add_argument( "--decode_method", default='beam_search', type=str, help="Method for ctc decoding: best_path or beam_search. " "(default: %(default)s)") parser.add_argument( "--beam_size", default=500, type=int, help="Width for beam search decoding. (default: %(default)d)") parser.add_argument( "--language_model_path", default="lm/data/common_crawl_00.prune01111.trie.klm", type=str, help="Path for language model. (default: %(default)s)") parser.add_argument( "--alpha", default=0.36, type=float, help="Parameter associated with language model. (default: %(default)f)") parser.add_argument( "--beta", default=0.25, type=float, help="Parameter associated with word count. (default: %(default)f)") parser.add_argument( "--cutoff_prob", default=0.99, type=float, help="The cutoff probability of pruning" "in beam search. (default: %(default)f)") args = parser.parse_args() def infer(): """Inference for DeepSpeech2.""" data_generator = DataGenerator( vocab_filepath=args.vocab_filepath, mean_std_filepath=args.mean_std_filepath, augmentation_config='{}', specgram_type=args.specgram_type, num_threads=args.num_threads_data) batch_reader = data_generator.batch_reader_creator( manifest_path=args.decode_manifest_path, batch_size=args.num_samples, min_batch_size=1, sortagrad=False, shuffle_method=None) infer_data = batch_reader().next() ds2_model = DeepSpeech2Model( vocab_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_layer_size=args.rnn_layer_size, pretrained_model_path=args.model_filepath) result_transcripts = ds2_model.infer_batch( infer_data=infer_data, decode_method=args.decode_method, beam_alpha=args.alpha, beam_beta=args.beta, beam_size=args.beam_size, cutoff_prob=args.cutoff_prob, vocab_list=data_generator.vocab_list, language_model_path=args.language_model_path, num_processes=args.num_processes_beam_search) target_transcripts = [ ''.join([data_generator.vocab_list[token] for token in transcript]) for _, transcript in infer_data ] for target, result in zip(target_transcripts, result_transcripts): print("\nTarget Transcription: %s\nOutput Transcription: %s" % (target, result)) print("Current wer = %f" % wer(target, result)) def main(): utils.print_arguments(args) paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count) infer() if __name__ == '__main__': main()