#! /usr/bin/env bash source path.sh # download language model cd ${MAIN_ROOT}/models/lm > /dev/null bash download_lm_en.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # download well-trained model cd ${MAIN_ROOT}/models/baidu_en8k > /dev/null bash download_model.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # infer CUDA_VISIBLE_DEVICES=0 \ python3 -u ${MAIN_ROOT}/infer.py \ --num_samples=10 \ --beam_size=500 \ --num_proc_bsearch=5 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=1024 \ --alpha=1.4 \ --beta=0.35 \ --cutoff_prob=1.0 \ --cutoff_top_n=40 \ --use_gru=True \ --use_gpu=False \ --share_rnn_weights=False \ --infer_manifest="${MAIN_ROOT}/examples/librispeech/data/manifest.test-clean" \ --mean_std_path="${MAIN_ROOT}/models/baidu_en8k/mean_std.npz" \ --vocab_path="${MAIN_ROOT}/models/baidu_en8k/vocab.txt" \ --model_path="${MAIN_ROOT}/models/baidu_en8k" \ --lang_model_path="${MAIN_ROOT}/models/lm/common_crawl_00.prune01111.trie.klm" \ --decoding_method="ctc_beam_search" \ --error_rate_type="wer" \ --specgram_type="linear" if [ $? -ne 0 ]; then echo "Failed in inference!" exit 1 fi exit 0