#! /usr/bin/env bash # download language model cd ${MAIN_ROOT}/models/lm > /dev/null bash download_lm_ch.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # download well-trained model cd ${MAIN_ROOT}/models/aishell > /dev/null bash download_model.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # evaluate model CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ python3 -u ${MAIN_ROOT}/test.py \ --batch_size=128 \ --beam_size=300 \ --num_proc_bsearch=8 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=1024 \ --alpha=2.6 \ --beta=5.0 \ --cutoff_prob=0.99 \ --cutoff_top_n=40 \ --use_gru=True \ --use_gpu=True \ --share_rnn_weights=False \ --test_manifest="data/manifest.test" \ --mean_std_path="${MAIN_ROOT}/models/aishell/mean_std.npz" \ --vocab_path="${MAIN_ROOT}/models/aishell/vocab.txt" \ --model_path="${MAIN_ROOT}/models/aishell" \ --lang_model_path="${MAIN_ROOT}/models/lm/zh_giga.no_cna_cmn.prune01244.klm" \ --decoding_method="ctc_beam_search" \ --error_rate_type="cer" \ --specgram_type="linear" if [ $? -ne 0 ]; then echo "Failed in evaluation!" exit 1 fi exit 0