# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the speech featurizer class.""" from deepspeech.frontend.featurizer.audio_featurizer import AudioFeaturizer from deepspeech.frontend.featurizer.text_featurizer import TextFeaturizer class SpeechFeaturizer(): """Speech featurizer, for extracting features from both audio and transcript contents of SpeechSegment. Currently, for audio parts, it supports feature types of linear spectrogram and mfcc; for transcript parts, it only supports char-level tokenizing and conversion into a list of token indices. Note that the token indexing order follows the given vocabulary file. :param vocab_filepath: Filepath to load vocabulary for token indices conversion. :type specgram_type: str :param specgram_type: Specgram feature type. Options: 'linear', 'mfcc'. :type specgram_type: str :param stride_ms: Striding size (in milliseconds) for generating frames. :type stride_ms: float :param window_ms: Window size (in milliseconds) for generating frames. :type window_ms: float :param max_freq: When specgram_type is 'linear', only FFT bins corresponding to frequencies between [0, max_freq] are returned; when specgram_type is 'mfcc', max_freq is the highest band edge of mel filters. :types max_freq: None|float :param target_sample_rate: Speech are resampled (if upsampling or downsampling is allowed) to this before extracting spectrogram features. :type target_sample_rate: float :param use_dB_normalization: Whether to normalize the audio to a certain decibels before extracting the features. :type use_dB_normalization: bool :param target_dB: Target audio decibels for normalization. :type target_dB: float """ def __init__(self, unit_type, vocab_filepath, spm_model_prefix=None, specgram_type='linear', feat_dim=None, delta_delta=False, stride_ms=10.0, window_ms=20.0, n_fft=None, max_freq=None, target_sample_rate=16000, use_dB_normalization=True, target_dB=-20, dither=1.0, maskctc=False): self.stride_ms = stride_ms self.window_ms = window_ms self.audio_feature = AudioFeaturizer( specgram_type=specgram_type, feat_dim=feat_dim, delta_delta=delta_delta, stride_ms=stride_ms, window_ms=window_ms, n_fft=n_fft, max_freq=max_freq, target_sample_rate=target_sample_rate, use_dB_normalization=use_dB_normalization, target_dB=target_dB, dither=dither) self.text_feature = TextFeaturizer( unit_type=unit_type, vocab_filepath=vocab_filepath, spm_model_prefix=spm_model_prefix, maskctc=maskctc) def featurize(self, speech_segment, keep_transcription_text): """Extract features for speech segment. 1. For audio parts, extract the audio features. 2. For transcript parts, keep the original text or convert text string to a list of token indices in char-level. Args: speech_segment (SpeechSegment): Speech segment to extract features from. keep_transcription_text (bool): True, keep transcript text, False, token ids Returns: tuple: 1) spectrogram audio feature in 2darray, 2) list oftoken indices. """ spec_feature = self.audio_feature.featurize(speech_segment) if keep_transcription_text: return spec_feature, speech_segment.transcript if speech_segment.has_token: text_ids = speech_segment.token_ids else: text_ids = self.text_feature.featurize(speech_segment.transcript) return spec_feature, text_ids def text_featurize(self, text, keep_transcription_text): """Extract features for speech segment. 1. For audio parts, extract the audio features. 2. For transcript parts, keep the original text or convert text string to a list of token indices in char-level. Args: text (str): text. keep_transcription_text (bool): True, keep transcript text, False, token ids Returns: (str|List[int]): text, or list of token indices. """ if keep_transcription_text: return text text_ids = self.text_feature.featurize(text) return text_ids