diff --git a/deepspeech/modules/conformer_convolution.py b/deepspeech/modules/conformer_convolution.py index ec08a34e4f9e5bd42c21c94f00d0dd05be5bf7df..59249d2ac302d321ae476c9b3eec0009f78f1dbb 100644 --- a/deepspeech/modules/conformer_convolution.py +++ b/deepspeech/modules/conformer_convolution.py @@ -126,7 +126,7 @@ class ConvolutionModule(nn.Layer): if self.lorder > 0: if cache is None: x = nn.functional.pad( - x, (self.lorder, 0), 'constant', 0.0, data_format='NCL') + x, [self.lorder, 0], 'constant', 0.0, data_format='NCL') else: assert cache.shape[0] == x.shape[0] # B assert cache.shape[1] == x.shape[1] # C diff --git a/deepspeech/modules/encoder.py b/deepspeech/modules/encoder.py index 41fcbac26378b0ec88ff53f26f673a478423a0c6..e326db8f92481d15b2c51a7dedd638e2cab4eb00 100644 --- a/deepspeech/modules/encoder.py +++ b/deepspeech/modules/encoder.py @@ -209,7 +209,9 @@ class BaseEncoder(nn.Layer): """ assert xs.size(0) == 1 # batch size must be one # tmp_masks is just for interface compatibility - tmp_masks = paddle.ones([1, xs.size(1)], dtype=paddle.bool) + # TODO(Hui Zhang): stride_slice not support bool tensor + # tmp_masks = paddle.ones([1, xs.size(1)], dtype=paddle.bool) + tmp_masks = paddle.ones([1, xs.size(1)], dtype=paddle.int32) tmp_masks = tmp_masks.unsqueeze(1) #[B=1, C=1, T] if self.global_cmvn is not None: diff --git a/deepspeech/modules/mask.py b/deepspeech/modules/mask.py index 74d4e30a6749a0eef688a3b97001470e42c7dedd..05e86eb33b586a86abcebe646dbe7e34bbd7de64 100644 --- a/deepspeech/modules/mask.py +++ b/deepspeech/modules/mask.py @@ -121,7 +121,7 @@ def subsequent_chunk_mask( [1, 1, 1, 1], [1, 1, 1, 1]] """ - ret = torch.zeros([size, size], dtype=paddle.bool) + ret = paddle.zeros([size, size], dtype=paddle.bool) for i in range(size): if num_left_chunks < 0: start = 0 @@ -186,13 +186,15 @@ def add_optional_chunk_mask(xs: paddle.Tensor, chunk_masks = subsequent_chunk_mask(xs.shape[1], chunk_size, num_left_chunks) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) - chunk_masks = masks & chunk_masks # (B, L, L) + # chunk_masks = masks & chunk_masks # (B, L, L) + chunk_masks = masks.logical_and(chunk_masks) # (B, L, L) elif static_chunk_size > 0: num_left_chunks = num_decoding_left_chunks chunk_masks = subsequent_chunk_mask(xs.shape[1], static_chunk_size, num_left_chunks) # (L, L) chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) - chunk_masks = masks & chunk_masks # (B, L, L) + # chunk_masks = masks & chunk_masks # (B, L, L) + chunk_masks = masks.logical_and(chunk_masks) # (B, L, L) else: chunk_masks = masks return chunk_masks diff --git a/examples/aishell/s1/conf/chunk_conformer.yaml b/examples/aishell/s1/conf/chunk_conformer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8f67ef41c9ece7bafc2b20d150bb899c84dd61f1 --- /dev/null +++ b/examples/aishell/s1/conf/chunk_conformer.yaml @@ -0,0 +1,114 @@ +# https://yaml.org/type/float.html +data: + train_manifest: data/manifest.train + dev_manifest: data/manifest.dev + test_manifest: data/manifest.test + vocab_filepath: data/vocab.txt + unit_type: 'char' + spm_model_prefix: '' + augmentation_config: conf/augmentation.json + batch_size: 32 + min_input_len: 0.5 + max_input_len: 20.0 # second + min_output_len: 0.0 + max_output_len: 400.0 + min_output_input_ratio: 0.05 + max_output_input_ratio: 10.0 + raw_wav: True # use raw_wav or kaldi feature + specgram_type: fbank #linear, mfcc, fbank + feat_dim: 80 + delta_delta: False + dither: 1.0 + target_sample_rate: 16000 + max_freq: None + n_fft: None + stride_ms: 10.0 + window_ms: 25.0 + use_dB_normalization: True + target_dB: -20 + random_seed: 0 + keep_transcription_text: False + sortagrad: True + shuffle_method: batch_shuffle + num_workers: 0 + + +# network architecture +model: + cmvn_file: "data/mean_std.json" + cmvn_file_type: "json" + # encoder related + encoder: conformer + encoder_conf: + output_size: 256 # dimension of attention + attention_heads: 4 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: True + use_cnn_module: True + cnn_module_kernel: 15 + activation_type: 'swish' + pos_enc_layer_type: 'rel_pos' + selfattention_layer_type: 'rel_selfattn' + causal: true + use_dynamic_chunk: true + cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster + use_dynamic_left_chunk: false + + # decoder related + decoder: transformer + decoder_conf: + attention_heads: 4 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 + + # hybrid CTC/attention + model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + + +training: + n_epoch: 180 + accum_grad: 1 + global_grad_clip: 5.0 + optim: adam + optim_conf: + lr: 0.001 + weight_decay: 1e-6 + scheduler: warmuplr # pytorch v1.1.0+ required + scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 + log_interval: 100 + + +decoding: + batch_size: 1 + error_rate_type: cer + decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' + lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm + alpha: 2.5 + beta: 0.3 + beam_size: 10 + cutoff_prob: 1.0 + cutoff_top_n: 0 + num_proc_bsearch: 8 + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. + decoding_chunk_size: 16 # decoding chunk size. Defaults to -1. + # <0: for decoding, use full chunk. + # >0: for decoding, use fixed chunk size as set. + # 0: used for training, it's prohibited here. + num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. + simulate_streaming: True # simulate streaming inference. Defaults to False. + +