diff --git a/demos/speaker_verification/README.md b/demos/speaker_verification/README.md index 71fbbfe04f4d83a07af2d40f2ed24ef0858804c3..7d7180ae9df6ef2c34bd414bfe65ecfc7284fc60 100644 --- a/demos/speaker_verification/README.md +++ b/demos/speaker_verification/README.md @@ -30,6 +30,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav paddlespeech vector --task spk --input vec.job echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk + + paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav" + + echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job + paddlespeech vector --task score --input vec.job ``` Usage: @@ -103,6 +108,19 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav audio_file='./85236145389.wav', device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb)) + + test_emb = vector_executor( + model='ecapatdnn_voxceleb12', + sample_rate=16000, + config=None, # Set `config` and `ckpt_path` to None to use pretrained model. + ckpt_path=None, + audio_file='./123456789.wav', + device=paddle.get_device()) + print('Test embedding Result: \n{}'.format(test_emb)) + + # score range [0, 1] + score = vector_executor.get_embeddings_score(audio_emb, test_emb) + print(f"Eembeddings Score: {score}") ``` Output: @@ -149,6 +167,49 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav -3.3925855 5.079156 7.759716 4.677565 5.8457737 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 -3.7760346 -11.118123 ] + # get the test embedding + Test embedding Result: + [ -1.902964 2.0690894 -8.034194 3.5472693 0.18089125 + 6.9085927 1.4097427 -1.9487704 -10.021278 -0.20755845 + -8.04332 4.344489 2.3200977 -14.306299 5.184692 + -11.55602 -3.8497238 0.6444722 1.2833948 2.6766639 + 0.5878921 0.7946299 1.7207596 2.5791872 14.998469 + -1.3385371 15.031221 -0.8006958 1.99287 -9.52007 + 2.435466 4.003221 -4.33817 -4.898601 -5.304714 + -18.033886 10.790787 -12.784645 -5.641755 2.9761686 + -10.566622 1.4839455 6.152458 -5.7195854 2.8603241 + 6.112133 8.489869 5.5958056 1.2836679 -1.2293907 + 0.89927405 7.0288725 -2.854029 -0.9782962 5.8255906 + 14.905906 -5.025907 0.7866458 -4.2444224 -16.354029 + 10.521315 0.9604709 -3.3257897 7.144871 -13.592733 + -8.568869 -1.7953678 0.26313916 10.916714 -6.9374123 + 1.857403 -6.2746415 2.8154466 -7.2338667 -2.293357 + -0.05452765 5.4287076 5.0849075 -6.690375 -1.6183422 + 3.654291 0.94352573 -9.200294 -5.4749465 -3.5235846 + 1.3420814 4.240421 -2.772944 -2.8451524 16.311104 + 4.2969875 -1.762936 -12.5758915 8.595198 -0.8835239 + -1.5708797 1.568961 1.1413603 3.5032008 -0.45251232 + -6.786333 16.89443 5.3366146 -8.789056 0.6355629 + 3.2579517 -3.328322 7.5969577 0.66025066 -6.550468 + -9.148656 2.020372 -0.4615173 1.1965656 -3.8764873 + 11.6562195 -6.0750933 12.182899 3.2218833 0.81969476 + 5.570001 -3.8459578 -7.205299 7.9262037 -7.6611166 + -5.249467 -2.2671914 7.2658715 -13.298164 4.821147 + -2.7263982 11.691089 -3.8918593 -2.838112 -1.0336838 + -3.8034165 2.8536487 -5.60398 -1.1972581 1.3455094 + -3.4903061 2.2408795 5.5010734 -3.970756 11.99696 + -7.8858757 0.43160373 -5.5059714 4.3426995 16.322706 + 11.635366 0.72157705 -9.245714 -3.91465 -4.449838 + -1.5716927 7.713747 -2.2430465 -6.198303 -13.481864 + 2.8156567 -5.7812386 5.1456156 2.7289324 -14.505571 + 13.270688 3.448231 -7.0659585 4.5886116 -4.466099 + -0.296428 -11.463529 -2.6076477 14.110243 -6.9725137 + -1.9962958 2.7119343 19.391657 0.01961198 14.607133 + -1.6695905 -4.391516 1.3131028 -6.670972 -5.888604 + 12.0612335 5.9285784 3.3715196 1.492534 10.723728 + -0.95514804 -12.085431 ] + # get the score between enroll and test + Eembeddings Score: 0.4292638301849365 ``` ### 4.Pretrained Models diff --git a/demos/speaker_verification/README_cn.md b/demos/speaker_verification/README_cn.md index 8b542b2035b773a0d7dcfc9d784b521fe9ceb9e4..db382f298df74c73ef5fcbd5a3fb64fb2fa1c44f 100644 --- a/demos/speaker_verification/README_cn.md +++ b/demos/speaker_verification/README_cn.md @@ -29,6 +29,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav paddlespeech vector --task spk --input vec.job echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk + + paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav" + + echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job + paddlespeech vector --task score --input vec.job ``` 使用方法: @@ -101,6 +106,19 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav audio_file='./85236145389.wav', device=paddle.get_device()) print('Audio embedding Result: \n{}'.format(audio_emb)) + + test_emb = vector_executor( + model='ecapatdnn_voxceleb12', + sample_rate=16000, + config=None, # Set `config` and `ckpt_path` to None to use pretrained model. + ckpt_path=None, + audio_file='./123456789.wav', + device=paddle.get_device()) + print('Test embedding Result: \n{}'.format(test_emb)) + + # score range [0, 1] + score = vector_executor.get_embeddings_score(audio_emb, test_emb) + print(f"Eembeddings Score: {score}") ``` 输出: @@ -146,6 +164,49 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav -3.3925855 5.079156 7.759716 4.677565 5.8457737 2.402413 7.7071047 3.9711342 -6.390043 6.1268735 -3.7760346 -11.118123 ] + # get the test embedding + Test embedding Result: + [ -1.902964 2.0690894 -8.034194 3.5472693 0.18089125 + 6.9085927 1.4097427 -1.9487704 -10.021278 -0.20755845 + -8.04332 4.344489 2.3200977 -14.306299 5.184692 + -11.55602 -3.8497238 0.6444722 1.2833948 2.6766639 + 0.5878921 0.7946299 1.7207596 2.5791872 14.998469 + -1.3385371 15.031221 -0.8006958 1.99287 -9.52007 + 2.435466 4.003221 -4.33817 -4.898601 -5.304714 + -18.033886 10.790787 -12.784645 -5.641755 2.9761686 + -10.566622 1.4839455 6.152458 -5.7195854 2.8603241 + 6.112133 8.489869 5.5958056 1.2836679 -1.2293907 + 0.89927405 7.0288725 -2.854029 -0.9782962 5.8255906 + 14.905906 -5.025907 0.7866458 -4.2444224 -16.354029 + 10.521315 0.9604709 -3.3257897 7.144871 -13.592733 + -8.568869 -1.7953678 0.26313916 10.916714 -6.9374123 + 1.857403 -6.2746415 2.8154466 -7.2338667 -2.293357 + -0.05452765 5.4287076 5.0849075 -6.690375 -1.6183422 + 3.654291 0.94352573 -9.200294 -5.4749465 -3.5235846 + 1.3420814 4.240421 -2.772944 -2.8451524 16.311104 + 4.2969875 -1.762936 -12.5758915 8.595198 -0.8835239 + -1.5708797 1.568961 1.1413603 3.5032008 -0.45251232 + -6.786333 16.89443 5.3366146 -8.789056 0.6355629 + 3.2579517 -3.328322 7.5969577 0.66025066 -6.550468 + -9.148656 2.020372 -0.4615173 1.1965656 -3.8764873 + 11.6562195 -6.0750933 12.182899 3.2218833 0.81969476 + 5.570001 -3.8459578 -7.205299 7.9262037 -7.6611166 + -5.249467 -2.2671914 7.2658715 -13.298164 4.821147 + -2.7263982 11.691089 -3.8918593 -2.838112 -1.0336838 + -3.8034165 2.8536487 -5.60398 -1.1972581 1.3455094 + -3.4903061 2.2408795 5.5010734 -3.970756 11.99696 + -7.8858757 0.43160373 -5.5059714 4.3426995 16.322706 + 11.635366 0.72157705 -9.245714 -3.91465 -4.449838 + -1.5716927 7.713747 -2.2430465 -6.198303 -13.481864 + 2.8156567 -5.7812386 5.1456156 2.7289324 -14.505571 + 13.270688 3.448231 -7.0659585 4.5886116 -4.466099 + -0.296428 -11.463529 -2.6076477 14.110243 -6.9725137 + -1.9962958 2.7119343 19.391657 0.01961198 14.607133 + -1.6695905 -4.391516 1.3131028 -6.670972 -5.888604 + 12.0612335 5.9285784 3.3715196 1.492534 10.723728 + -0.95514804 -12.085431 ] + # get the score between enroll and test + Eembeddings Score: 0.4292638301849365 ``` ### 4.预训练模型 diff --git a/demos/speaker_verification/run.sh b/demos/speaker_verification/run.sh index 23ca8eb424aa7b6f7d3ab39501d43c529d03550f..6140f7f38111978d464c58cafd35aa9c4c0a7cb7 100644 --- a/demos/speaker_verification/run.sh +++ b/demos/speaker_verification/run.sh @@ -1,6 +1,9 @@ #!/bin/bash wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav +wget -c https://paddlespeech.bj.bcebos.com/vector/audio/123456789.wav # vector paddlespeech vector --task spk --input ./85236145389.wav + +paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav" diff --git a/paddlespeech/cli/vector/infer.py b/paddlespeech/cli/vector/infer.py index 52f4f207a31fd4dfdcf7eafdcd920643714611b5..68e832ac74d4dda805a4185ab09a72f2eb7d6413 100644 --- a/paddlespeech/cli/vector/infer.py +++ b/paddlespeech/cli/vector/infer.py @@ -15,6 +15,7 @@ import argparse import os import sys from collections import OrderedDict +from typing import Dict from typing import List from typing import Optional from typing import Union @@ -79,7 +80,7 @@ class VectorExecutor(BaseExecutor): "--task", type=str, default="spk", - choices=["spk"], + choices=["spk", "score"], help="task type in vector domain") self.parser.add_argument( "--input", @@ -147,13 +148,40 @@ class VectorExecutor(BaseExecutor): logger.info(f"task source: {task_source}") # stage 3: process the audio one by one + # we do action according the task type task_result = OrderedDict() has_exceptions = False for id_, input_ in task_source.items(): try: - res = self(input_, model, sample_rate, config, ckpt_path, - device) - task_result[id_] = res + # extract the speaker audio embedding + if parser_args.task == "spk": + logger.info("do vector spk task") + res = self(input_, model, sample_rate, config, ckpt_path, + device) + task_result[id_] = res + elif parser_args.task == "score": + logger.info("do vector score task") + logger.info(f"input content {input_}") + if len(input_.split()) != 2: + logger.error( + f"vector score task input {input_} wav num is not two," + "that is {len(input_.split())}") + sys.exit(-1) + + # get the enroll and test embedding + enroll_audio, test_audio = input_.split() + logger.info( + f"score task, enroll audio: {enroll_audio}, test audio: {test_audio}" + ) + enroll_embedding = self(enroll_audio, model, sample_rate, + config, ckpt_path, device) + test_embedding = self(test_audio, model, sample_rate, + config, ckpt_path, device) + + # get the score + res = self.get_embeddings_score(enroll_embedding, + test_embedding) + task_result[id_] = res except Exception as e: has_exceptions = True task_result[id_] = f'{e.__class__.__name__}: {e}' @@ -172,6 +200,49 @@ class VectorExecutor(BaseExecutor): else: return True + def _get_job_contents( + self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]: + """ + Read a job input file and return its contents in a dictionary. + Refactor from the Executor._get_job_contents + + Args: + job_input (os.PathLike): The job input file. + + Returns: + Dict[str, str]: Contents of job input. + """ + job_contents = OrderedDict() + with open(job_input) as f: + for line in f: + line = line.strip() + if not line: + continue + k = line.split(' ')[0] + v = ' '.join(line.split(' ')[1:]) + job_contents[k] = v + return job_contents + + def get_embeddings_score(self, enroll_embedding, test_embedding): + """get the enroll embedding and test embedding score + + Args: + enroll_embedding (numpy.array): shape: (emb_size), enroll audio embedding + test_embedding (numpy.array): shape: (emb_size), test audio embedding + + Returns: + score: the score between enroll embedding and test embedding + """ + if not hasattr(self, "score_func"): + self.score_func = paddle.nn.CosineSimilarity(axis=0) + logger.info("create the cosine score function ") + + score = self.score_func( + paddle.to_tensor(enroll_embedding), + paddle.to_tensor(test_embedding)) + + return score.item() + @stats_wrapper def __call__(self, audio_file: os.PathLike, diff --git a/paddlespeech/vector/models/ecapa_tdnn.py b/paddlespeech/vector/models/ecapa_tdnn.py index 0e7287cd3614d8964941f6d14179e0ce7f3c4d71..895ff13f4509c7070d2473aebf8ce693a50dbcee 100644 --- a/paddlespeech/vector/models/ecapa_tdnn.py +++ b/paddlespeech/vector/models/ecapa_tdnn.py @@ -79,6 +79,20 @@ class Conv1d(nn.Layer): bias_attr=bias, ) def forward(self, x): + """Do conv1d forward + + Args: + x (paddle.Tensor): [N, C, L] input data, + N is the batch, + C is the data dimension, + L is the time + + Raises: + ValueError: only support the same padding type + + Returns: + paddle.Tensor: the value of conv1d + """ if self.padding == "same": x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride) @@ -88,6 +102,20 @@ class Conv1d(nn.Layer): return self.conv(x) def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int): + """Padding the input data + + Args: + x (paddle.Tensor): [N, C, L] input data + N is the batch, + C is the data dimension, + L is the time + kernel_size (int): 1-d convolution kernel size + dilation (int): 1-d convolution dilation + stride (int): 1-d convolution stride + + Returns: + paddle.Tensor: the padded input data + """ L_in = x.shape[-1] # Detecting input shape padding = self._get_padding_elem(L_in, stride, kernel_size, dilation) # Time padding @@ -101,6 +129,17 @@ class Conv1d(nn.Layer): stride: int, kernel_size: int, dilation: int): + """Calculate the padding value in same mode + + Args: + L_in (int): the times of the input data, + stride (int): 1-d convolution stride + kernel_size (int): 1-d convolution kernel size + dilation (int): 1-d convolution stride + + Returns: + int: return the padding value in same mode + """ if stride > 1: n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1) L_out = stride * (n_steps - 1) + kernel_size * dilation @@ -245,6 +284,13 @@ class SEBlock(nn.Layer): class AttentiveStatisticsPooling(nn.Layer): def __init__(self, channels, attention_channels=128, global_context=True): + """Compute the speaker verification statistics + The detail info is section 3.1 in https://arxiv.org/pdf/1709.01507.pdf + Args: + channels (int): input data channel or data dimension + attention_channels (int, optional): attention dimension. Defaults to 128. + global_context (bool, optional): If use the global context information. Defaults to True. + """ super().__init__() self.eps = 1e-12