Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
e0280ff9
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 1 年 前同步成功
通知
207
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e0280ff9
编写于
2月 09, 2022
作者:
P
pollyyan
提交者:
GitHub
2月 09, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1431 from yt605155624/fix_dead_link
[doc]fix dead links
上级
270fe4fd
ea29275a
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
7 addition
and
11 deletion
+7
-11
docs/source/released_model.md
docs/source/released_model.md
+4
-4
docs/source/tts/README.md
docs/source/tts/README.md
+0
-4
examples/thchs30/align0/README.md
examples/thchs30/align0/README.md
+2
-2
tests/benchmark/conformer/README.md
tests/benchmark/conformer/README.md
+1
-1
未找到文件。
docs/source/released_model.md
浏览文件 @
e0280ff9
...
...
@@ -10,9 +10,9 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
[
Conformer Offline Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_0.1.1.model.tar.gz
)
| Aishell Dataset | Char-based | 284 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.056 |-| 151 h |
[
Conformer Offline Aishell ASR1
](
../../examples/aishell/asr1
)
[
Transformer Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_transformer_aishell_ckpt_0.1.1.model.tar.gz
)
| Aishell Dataset | Char-based | 128 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0523 || 151 h |
[
Transformer Aishell ASR1
](
../../examples/aishell/asr1
)
[
Ds2 Offline Librispeech ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr0/asr0_deepspeech2_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | Char-based | 518 MB | 2 Conv + 3 bidirectional LSTM layers| - |0.0725| 960 h |
[
Ds2 Offline Librispeech ASR0
](
../../examples/librispeech/asr0
)
[
Conformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 191 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0337 | 960 h |
[
Conformer Librispeech ASR1
](
../../example/librispeech/asr1
)
[
Transformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h |
[
Transformer Librispeech ASR1
](
../../example/librispeech/asr1
)
[
Transformer Librispeech ASR2 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h |
[
Transformer Librispeech ASR2
](
../../example/librispeech/asr2
)
[
Conformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 191 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0337 | 960 h |
[
Conformer Librispeech ASR1
](
../../example
s
/librispeech/asr1
)
[
Transformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h |
[
Transformer Librispeech ASR1
](
../../example
s
/librispeech/asr1
)
[
Transformer Librispeech ASR2 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h |
[
Transformer Librispeech ASR2
](
../../example
s
/librispeech/asr2
)
### Language Model based on NGram
Language Model | Training Data | Token-based | Size | Descriptions
...
...
@@ -66,7 +66,7 @@ GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/
Model Type | Dataset| Example Link | Pretrained Models
:-------------:| :------------:| :-----: | :-----:
PANN | Audioset|
[
audioset_tagging_cnn
](
https://github.com/qiuqiangkong/audioset_tagging_cnn
)
|
[
panns_cnn6.pdparams
](
https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams
)
,
[
panns_cnn10.pdparams
](
https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams
)
,
[
panns_cnn14.pdparams
](
https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams
)
PANN | ESC-50 |
[
pann-esc50
](
"./examples/esc50/cls0"
)
|
[
esc50_cnn6.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn6.tar.gz
)
,
[
esc50_cnn10.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn10.tar.gz
)
,
[
esc50_cnn14.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn14.tar.gz
)
PANN | ESC-50 |
[
pann-esc50
](
../../examples/esc50/cls0
)
|
[
esc50_cnn6.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn6.tar.gz
)
,
[
esc50_cnn10.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn10.tar.gz
)
,
[
esc50_cnn14.tar.gz
](
https://paddlespeech.bj.bcebos.com/cls/esc50/esc50_cnn14.tar.gz
)
## Punctuation Restoration Models
Model Type | Dataset| Example Link | Pretrained Models
...
...
docs/source/tts/README.md
浏览文件 @
e0280ff9
...
...
@@ -71,7 +71,3 @@ Check our [website](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html)
#### GE2E
1.
[
ge2e_ckpt_0.3.zip
](
https://paddlespeech.bj.bcebos.com/Parakeet/ge2e_ckpt_0.3.zip
)
## License
Parakeet is provided under the
[
Apache-2.0 license
](
LICENSE
)
.
examples/thchs30/align0/README.md
浏览文件 @
e0280ff9
...
...
@@ -27,7 +27,7 @@ cd a0
应用程序会自动下载 THCHS-30数据集,处理成 MFA 所需的文件格式并开始训练,您可以修改
`run.sh`
中的参数
`LEXICON_NAME`
来决定您需要强制对齐的级别(word、syllable 和 phone)
## MFA 所使用的字典
---
MFA 字典的格式请参考:
[
MFA 官方文档
Dictionary format
](
https://montreal-forced-aligner.readthedocs.io/en/latest/dictionary.html
)
MFA 字典的格式请参考:
[
MFA 官方文档
](
https://montreal-forced-aligner.readthedocs.io/en/latest/
)
phone.lexicon 直接使用的是
`THCHS-30/data_thchs30/lm_phone/lexicon.txt`
word.lexicon 考虑到了中文的多音字,使用
**带概率的字典**
, 生成规则请参考
`local/gen_word2phone.py`
`syllable.lexicon`
获取自
[
DNSun/thchs30-pinyin2tone
](
https://github.com/DNSun/thchs30-pinyin2tone
)
...
...
@@ -39,4 +39,4 @@ word.lexicon 考虑到了中文的多音字,使用**带概率的字典**, 生
**syllabel 级别:**
[
syllable.lexicon
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/syllable.lexicon
)
、
[
对齐结果
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/thchs30_alignment.tar.gz
)
、
[
模型
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/syllable/thchs30_model.zip
)
**word 级别:**
[
word.lexicon
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/word.lexicon
)
、
[
对齐结果
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/thchs30_alignment.tar.gz
)
、
[
模型
](
https://paddlespeech.bj.bcebos.com/MFA/THCHS30/word/thchs30_model.zip
)
随后,您可以参考
[
MFA 官方文档
Align using pretrained models
](
https://montreal-forced-aligner.readthedocs.io/en/stable/aligning.html#align-using-pretrained-models
)
使用我们给您提供好的模型直接对自己的数据集进行强制对齐,注意,您需要使用和模型对应的 lexicon 文件,当文本是汉字时,您需要用空格把不同的
**汉字**
(而不是词语)分开
随后,您可以参考
[
MFA 官方文档
](
https://montreal-forced-aligner.readthedocs.io/en/latest/
)
使用我们给您提供好的模型直接对自己的数据集进行强制对齐,注意,您需要使用和模型对应的 lexicon 文件,当文本是汉字时,您需要用空格把不同的
**汉字**
(而不是词语)分开
tests/benchmark/conformer/README.md
浏览文件 @
e0280ff9
### Prepare the environment
Please follow the instructions shown in
[
here
](
../../docs/source/install.md
)
to install the Deepspeech first.
Please follow the instructions shown in
[
here
](
../../
../
docs/source/install.md
)
to install the Deepspeech first.
### File list
└── benchmark # 模型名
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录