Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
d95b0cd9
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 1 年 前同步成功
通知
207
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
d95b0cd9
编写于
6月 17, 2022
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add release and resource
上级
c3f762eb
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
73 addition
and
13 deletion
+73
-13
docs/source/released_model.md
docs/source/released_model.md
+13
-13
paddlespeech/resource/pretrained_models.py
paddlespeech/resource/pretrained_models.py
+60
-0
未找到文件。
docs/source/released_model.md
浏览文件 @
d95b0cd9
...
...
@@ -4,19 +4,19 @@
## Speech-to-Text Models
### Speech Recognition Model
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | Example Link
:-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----:
[
Ds2 Online Wenetspeech ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/asr0_deepspeech2_online_wenetspeech_ckpt_1.0.
2.model.tar.gz
)
| Wenetspeech Dataset | Char-based | 1.2 GB | 2 Conv + 5 LSTM layers | 0.152 (test
\_
net, w/o LM)
<br>
0.2417 (test
\_
meeting, w/o LM)
<br>
0.053 (aishell, w/ LM) |-| 10000 h |-
[
Ds2 Online Aishell ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_0.2.1.model.tar.gz
)
| Aishell Dataset | Char-based | 491 MB | 2 Conv + 5 LSTM layers | 0.0666 |-| 151 h |
[
D2 Online Aishell ASR0
](
../../examples/aishell/asr0
)
[
Ds2 Offline Aishell ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_offline_aishell_ckpt_1.0.1.model.tar.gz
)
| Aishell Dataset | Char-based | 1.4 GB | 2 Conv + 5 bidirectional LSTM layers| 0.0554 |-| 151 h |
[
Ds2 Offline Aishell ASR0
](
../../examples/aishell/asr0
)
[
Conformer Online Wenetspeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz
)
| WenetSpeech Dataset | Char-based | 457 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.11 (test
\_
net) 0.1879 (test
\_
meeting) |-| 10000 h |-
[
Conformer Online Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.2.0.model.tar.gz
)
| Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.0544 |-| 151 h |
[
Conformer Online Aishell ASR1
](
../../examples/aishell/asr1
)
[
Conformer Offline Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_0.1.2.model.tar.gz
)
| Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0464 |-| 151 h |
[
Conformer Offline Aishell ASR1
](
../../examples/aishell/asr1
)
[
Transformer Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_transformer_aishell_ckpt_0.1.1.model.tar.gz
)
| Aishell Dataset | Char-based | 128 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0523 || 151 h |
[
Transformer Aishell ASR1
](
../../examples/aishell/asr1
)
[
Ds2 Offline Librispeech ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr0/asr0_deepspeech2_offline_librispeech_ckpt_1.0.1.model.tar.gz
)
| Librispeech Dataset | Char-based | 1.3 GB | 2 Conv + 5 bidirectional LSTM layers| - |0.0467| 960 h |
[
Ds2 Offline Librispeech ASR0
](
../../examples/librispeech/asr0
)
[
Conformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 191 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0338 | 960 h |
[
Conformer Librispeech ASR1
](
../../examples/librispeech/asr1
)
[
Transformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h |
[
Transformer Librispeech ASR1
](
../../examples/librispeech/asr1
)
[
Transformer Librispeech ASR2 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h |
[
Transformer Librispeech ASR2
](
../../examples/librispeech/asr2
)
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | Example Link
| Inference Type |
:-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----:
| :-----: |
[
Ds2 Online Wenetspeech ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/asr0_deepspeech2_online_wenetspeech_ckpt_1.0.
4.model.tar.gz
)
| Wenetspeech Dataset | Char-based | 1.2 GB | 2 Conv + 5 LSTM layers | 0.152 (test
\_
net, w/o LM)
<br>
0.2417 (test
\_
meeting, w/o LM)
<br>
0.053 (aishell, w/ LM) |-| 10000 h | - | onnx/inference/python |
[
Ds2 Online Aishell ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_fbank161_ckpt_0.2.1.model.tar.gz
)
| Aishell Dataset | Char-based | 491 MB | 2 Conv + 5 LSTM layers | 0.0666 |-| 151 h |
[
D2 Online Aishell ASR0
](
../../examples/aishell/asr0
)
| onnx/inference/python |
[
Ds2 Offline Aishell ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_offline_aishell_ckpt_1.0.1.model.tar.gz
)
| Aishell Dataset | Char-based | 1.4 GB | 2 Conv + 5 bidirectional LSTM layers| 0.0554 |-| 151 h |
[
Ds2 Offline Aishell ASR0
](
../../examples/aishell/asr0
)
| inference/python |
[
Conformer Online Wenetspeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr1/asr1_chunk_conformer_wenetspeech_ckpt_1.0.0a.model.tar.gz
)
| WenetSpeech Dataset | Char-based | 457 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.11 (test
\_
net) 0.1879 (test
\_
meeting) |-| 10000 h |-
| python |
[
Conformer Online Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.2.0.model.tar.gz
)
| Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring| 0.0544 |-| 151 h |
[
Conformer Online Aishell ASR1
](
../../examples/aishell/asr1
)
| python |
[
Conformer Offline Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_conformer_aishell_ckpt_0.1.2.model.tar.gz
)
| Aishell Dataset | Char-based | 189 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0464 |-| 151 h |
[
Conformer Offline Aishell ASR1
](
../../examples/aishell/asr1
)
| python |
[
Transformer Aishell ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_transformer_aishell_ckpt_0.1.1.model.tar.gz
)
| Aishell Dataset | Char-based | 128 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0523 || 151 h |
[
Transformer Aishell ASR1
](
../../examples/aishell/asr1
)
| python |
[
Ds2 Offline Librispeech ASR0 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr0/asr0_deepspeech2_offline_librispeech_ckpt_1.0.1.model.tar.gz
)
| Librispeech Dataset | Char-based | 1.3 GB | 2 Conv + 5 bidirectional LSTM layers| - |0.0467| 960 h |
[
Ds2 Offline Librispeech ASR0
](
../../examples/librispeech/asr0
)
| inference/python |
[
Conformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_conformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 191 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0338 | 960 h |
[
Conformer Librispeech ASR1
](
../../examples/librispeech/asr1
)
| python |
[
Transformer Librispeech ASR1 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h |
[
Transformer Librispeech ASR1
](
../../examples/librispeech/asr1
)
| python |
[
Transformer Librispeech ASR2 Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz
)
| Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h |
[
Transformer Librispeech ASR2
](
../../examples/librispeech/asr2
)
| python |
### Language Model based on NGram
Language Model | Training Data | Token-based | Size | Descriptions
...
...
paddlespeech/resource/pretrained_models.py
浏览文件 @
d95b0cd9
...
...
@@ -155,6 +155,26 @@ asr_dynamic_pretrained_models = {
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
'1.0.4'
:
{
'url'
:
'http://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/asr0_deepspeech2_online_wenetspeech_ckpt_1.0.4.model.tar.gz'
,
'md5'
:
'c595cb76902b5a5d01409171375989f4'
,
'cfg_path'
:
'model.yaml'
,
'ckpt_path'
:
'exp/deepspeech2_online/checkpoints/avg_10'
,
'model'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdmodel'
,
'params'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdiparams'
,
'onnx_model'
:
'onnx/model.onnx'
,
'lm_url'
:
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm'
,
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
},
"deepspeech2offline_aishell-zh-16k"
:
{
'1.0'
:
{
...
...
@@ -294,6 +314,26 @@ asr_static_pretrained_models = {
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
'1.0.4'
:
{
'url'
:
'http://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/asr0_deepspeech2_online_wenetspeech_ckpt_1.0.4.model.tar.gz'
,
'md5'
:
'c595cb76902b5a5d01409171375989f4'
,
'cfg_path'
:
'model.yaml'
,
'ckpt_path'
:
'exp/deepspeech2_online/checkpoints/avg_10'
,
'model'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdmodel'
,
'params'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdiparams'
,
'onnx_model'
:
'onnx/model.onnx'
,
'lm_url'
:
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm'
,
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
},
}
...
...
@@ -341,6 +381,26 @@ asr_onnx_pretrained_models = {
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
'1.0.4'
:
{
'url'
:
'http://paddlespeech.bj.bcebos.com/s2t/wenetspeech/asr0/asr0_deepspeech2_online_wenetspeech_ckpt_1.0.4.model.tar.gz'
,
'md5'
:
'c595cb76902b5a5d01409171375989f4'
,
'cfg_path'
:
'model.yaml'
,
'ckpt_path'
:
'exp/deepspeech2_online/checkpoints/avg_10'
,
'model'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdmodel'
,
'params'
:
'exp/deepspeech2_online/checkpoints/avg_10.jit.pdiparams'
,
'onnx_model'
:
'onnx/model.onnx'
,
'lm_url'
:
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm'
,
'lm_md5'
:
'29e02312deb2e59b3c8686c7966d4fe3'
},
},
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录