From d0ce1b3e6c51c24a092ee2984eb831575966190f Mon Sep 17 00:00:00 2001 From: KP <109694228@qq.com> Date: Thu, 7 Apr 2022 14:31:59 +0800 Subject: [PATCH] Delete mcd.py --- paddleaudio/paddleaudio/metric/mcd.py | 63 --------------------------- 1 file changed, 63 deletions(-) delete mode 100644 paddleaudio/paddleaudio/metric/mcd.py diff --git a/paddleaudio/paddleaudio/metric/mcd.py b/paddleaudio/paddleaudio/metric/mcd.py deleted file mode 100644 index c973c852..00000000 --- a/paddleaudio/paddleaudio/metric/mcd.py +++ /dev/null @@ -1,63 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import Callable - -import mcd.metrics as mt -import numpy as np -from mcd import dtw - -__all__ = [ - 'mcd_distance', -] - - -def mcd_distance(xs: np.ndarray, - ys: np.ndarray, - cost_fn: Callable=mt.logSpecDbDist) -> float: - """Mel cepstral distortion (MCD), dtw distance. - - Dynamic Time Warping. - Uses dynamic programming to compute: - - Examples: - .. code-block:: python - - wps[i, j] = cost_fn(xs[i], ys[j]) + min( - wps[i-1, j ], // vertical / insertion / expansion - wps[i , j-1], // horizontal / deletion / compression - wps[i-1, j-1]) // diagonal / match - - dtw = sqrt(wps[-1, -1]) - - Cost Function: - Examples: - .. code-block:: python - - logSpecDbConst = 10.0 / math.log(10.0) * math.sqrt(2.0) - - def logSpecDbDist(x, y): - diff = x - y - return logSpecDbConst * math.sqrt(np.inner(diff, diff)) - - Args: - xs (np.ndarray): ref sequence, [T,D] - ys (np.ndarray): hyp sequence, [T,D] - cost_fn (Callable, optional): Cost function. Defaults to mt.logSpecDbDist. - - Returns: - float: dtw distance - """ - - min_cost, path = dtw.dtw(xs, ys, cost_fn) - return min_cost -- GitLab