Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
d064c819
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d064c819
编写于
4月 07, 2022
作者:
X
xiongxinlei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the speaker verification model, test=doc
上级
a2c0fbf2
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
287 addition
and
166 deletion
+287
-166
demos/speaker_verification/README.md
demos/speaker_verification/README.md
+142
-81
demos/speaker_verification/README_cn.md
demos/speaker_verification/README_cn.md
+139
-79
demos/speaker_verification/run.sh
demos/speaker_verification/run.sh
+2
-2
docs/source/released_model.md
docs/source/released_model.md
+1
-1
examples/voxceleb/sv0/RESULT.md
examples/voxceleb/sv0/RESULT.md
+1
-1
paddlespeech/cli/vector/infer.py
paddlespeech/cli/vector/infer.py
+2
-2
未找到文件。
demos/speaker_verification/README.md
浏览文件 @
d064c819
...
@@ -30,6 +30,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -30,6 +30,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
paddlespeech vector
--task
spk
--input
vec.job
paddlespeech vector
--task
spk
--input
vec.job
echo
-e
"demo2 85236145389.wav
\n
demo3 85236145389.wav"
| paddlespeech vector
--task
spk
echo
-e
"demo2 85236145389.wav
\n
demo3 85236145389.wav"
| paddlespeech vector
--task
spk
paddlespeech vector
--task
score
--input
"./85236145389.wav ./123456789.wav"
echo
-e
"demo4 85236145389.wav 85236145389.wav
\n
demo5 85236145389.wav 123456789.wav"
>
vec.job
paddlespeech vector
--task
score
--input
vec.job
```
```
Usage:
Usage:
...
@@ -38,6 +43,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -38,6 +43,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
```
Arguments:
Arguments:
-
`input`
(required): Audio file to recognize.
-
`input`
(required): Audio file to recognize.
-
`task`
(required): Specify
`vector`
task. Default
`spk`
。
-
`model`
: Model type of vector task. Default:
`ecapatdnn_voxceleb12`
.
-
`model`
: Model type of vector task. Default:
`ecapatdnn_voxceleb12`
.
-
`sample_rate`
: Sample rate of the model. Default:
`16000`
.
-
`sample_rate`
: Sample rate of the model. Default:
`16000`
.
-
`config`
: Config of vector task. Use pretrained model when it is None. Default:
`None`
.
-
`config`
: Config of vector task. Use pretrained model when it is None. Default:
`None`
.
...
@@ -47,45 +53,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -47,45 +53,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
Output:
Output:
```
bash
```
bash
demo
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
demo
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-
11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-
9
.723131 0.6619743
-6
.976803 10.213478 7.494748
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.29473
7
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.40336
7
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-
22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
-
18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
15.999649 3.3004563 12.747926 15.429879 4.7849145
11.567354 3.69788 11.258265 7.442363 9.183411
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-
11
.54324 7.681869 0.44475392 9.708182
-8
.93284
6
-
4
.473626 7.6624317
-0
.55381083 9.631587
-6
.470455
6
0.4123232
-4
.361452 1.3948607 9.511665 0.1166765
4
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.975870
4
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
4.010979 11.000591
-2
.8873312 7.1352735
-16
.7966
3
-0
.31784213 9.493548 2.1144536 4.358092
-12
.08982
3
18.495346
-14
.293832 7.89578 2.2714825 22.976387
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-
11
.924197 2.171869 2.0423572
-6
.173772 10.778437
-
9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-
12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-
8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.2701402
-11
.508579
]
-3
.7760346
-11
.118123
]
```
```
-
Python API
-
Python API
...
@@ -97,56 +103,111 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -97,56 +103,111 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
audio_emb
=
vector_executor
(
audio_emb
=
vector_executor
(
model
=
'ecapatdnn_voxceleb12'
,
model
=
'ecapatdnn_voxceleb12'
,
sample_rate
=
16000
,
sample_rate
=
16000
,
config
=
None
,
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
ckpt_path
=
None
,
audio_file
=
'./85236145389.wav'
,
audio_file
=
'./85236145389.wav'
,
force_yes
=
False
,
device
=
paddle
.
get_device
())
device
=
paddle
.
get_device
())
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
test_emb
=
vector_executor
(
model
=
'ecapatdnn_voxceleb12'
,
sample_rate
=
16000
,
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
audio_file
=
'./123456789.wav'
,
device
=
paddle
.
get_device
())
print
(
'Test embedding Result:
\n
{}'
.
format
(
test_emb
))
score
=
vector_executor
.
get_embeddings_score
(
audio_emb
,
test_emb
)
print
(
f
"Eembeddings Score:
{
score
}
"
)
```
```
Output:
Output:
```
bash
```
bash
# Vector Result:
# Vector Result:
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
Audio embedding Result:
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
-11
.343508 2.3385992
-8
.719341 14.213509 15.404744
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-9
.723131 0.6619743
-6
.976803 10.213478 7.494748
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.294737
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.403367
-22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
-18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
-3
.539873 3.814236 5.1420674 2.162061 4.096431
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
15.999649 3.3004563 12.747926 15.429879 4.7849145
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
11.567354 3.69788 11.258265 7.442363 9.183411
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-11
.54324 7.681869 0.44475392 9.708182
-8
.932846
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
0.4123232
-4
.361452 1.3948607 9.511665 0.11667654
-4
.473626 7.6624317
-0
.55381083 9.631587
-6
.4704556
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.9758704
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
4.010979 11.000591
-2
.8873312 7.1352735
-16
.79663
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-0
.31784213 9.493548 2.1144536 4.358092
-12
.089823
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-11
.924197 2.171869 2.0423572
-6
.173772 10.778437
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
-8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
4.532936 2.7264361 10.145339
-6
.521951 2.897153
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
-3
.2701402
-11
.508579
]
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
# get the test embedding
Test embedding Result:
[
-1
.902964 2.0690894
-8
.034194 3.5472693 0.18089125
6.9085927 1.4097427
-1
.9487704
-10
.021278
-0
.20755845
-8
.04332 4.344489 2.3200977
-14
.306299 5.184692
-11
.55602
-3
.8497238 0.6444722 1.2833948 2.6766639
0.5878921 0.7946299 1.7207596 2.5791872 14.998469
-1
.3385371 15.031221
-0
.8006958 1.99287
-9
.52007
2.435466 4.003221
-4
.33817
-4
.898601
-5
.304714
-18
.033886 10.790787
-12
.784645
-5
.641755 2.9761686
-10
.566622 1.4839455 6.152458
-5
.7195854 2.8603241
6.112133 8.489869 5.5958056 1.2836679
-1
.2293907
0.89927405 7.0288725
-2
.854029
-0
.9782962 5.8255906
14.905906
-5
.025907 0.7866458
-4
.2444224
-16
.354029
10.521315 0.9604709
-3
.3257897 7.144871
-13
.592733
-8
.568869
-1
.7953678 0.26313916 10.916714
-6
.9374123
1.857403
-6
.2746415 2.8154466
-7
.2338667
-2
.293357
-0
.05452765 5.4287076 5.0849075
-6
.690375
-1
.6183422
3.654291 0.94352573
-9
.200294
-5
.4749465
-3
.5235846
1.3420814 4.240421
-2
.772944
-2
.8451524 16.311104
4.2969875
-1
.762936
-12
.5758915 8.595198
-0
.8835239
-1
.5708797 1.568961 1.1413603 3.5032008
-0
.45251232
-6
.786333 16.89443 5.3366146
-8
.789056 0.6355629
3.2579517
-3
.328322 7.5969577 0.66025066
-6
.550468
-9
.148656 2.020372
-0
.4615173 1.1965656
-3
.8764873
11.6562195
-6
.0750933 12.182899 3.2218833 0.81969476
5.570001
-3
.8459578
-7
.205299 7.9262037
-7
.6611166
-5
.249467
-2
.2671914 7.2658715
-13
.298164 4.821147
-2
.7263982 11.691089
-3
.8918593
-2
.838112
-1
.0336838
-3
.8034165 2.8536487
-5
.60398
-1
.1972581 1.3455094
-3
.4903061 2.2408795 5.5010734
-3
.970756 11.99696
-7
.8858757 0.43160373
-5
.5059714 4.3426995 16.322706
11.635366 0.72157705
-9
.245714
-3
.91465
-4
.449838
-1
.5716927 7.713747
-2
.2430465
-6
.198303
-13
.481864
2.8156567
-5
.7812386 5.1456156 2.7289324
-14
.505571
13.270688 3.448231
-7
.0659585 4.5886116
-4
.466099
-0
.296428
-11
.463529
-2
.6076477 14.110243
-6
.9725137
-1
.9962958 2.7119343 19.391657 0.01961198 14.607133
-1
.6695905
-4
.391516 1.3131028
-6
.670972
-5
.888604
12.0612335 5.9285784 3.3715196 1.492534 10.723728
-0
.95514804
-12
.085431
]
# get the score between enroll and test
Eembeddings Score: 0.4292638301849365
```
```
### 4.Pretrained Models
### 4.Pretrained Models
...
...
demos/speaker_verification/README_cn.md
浏览文件 @
d064c819
...
@@ -29,6 +29,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -29,6 +29,11 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
paddlespeech vector
--task
spk
--input
vec.job
paddlespeech vector
--task
spk
--input
vec.job
echo
-e
"demo2 85236145389.wav
\n
demo3 85236145389.wav"
| paddlespeech vector
--task
spk
echo
-e
"demo2 85236145389.wav
\n
demo3 85236145389.wav"
| paddlespeech vector
--task
spk
paddlespeech vector
--task
score
--input
"./85236145389.wav ./123456789.wav"
echo
-e
"demo4 85236145389.wav 85236145389.wav
\n
demo5 85236145389.wav 123456789.wav"
>
vec.job
paddlespeech vector
--task
score
--input
vec.job
```
```
使用方法:
使用方法:
...
@@ -37,6 +42,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -37,6 +42,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
```
参数:
参数:
-
`input`
(必须输入):用于识别的音频文件。
-
`input`
(必须输入):用于识别的音频文件。
-
`task`
(必须输入): 用于指定
`vector`
处理的具体任务,默认是
`spk`
。
-
`model`
:声纹任务的模型,默认值:
`ecapatdnn_voxceleb12`
。
-
`model`
:声纹任务的模型,默认值:
`ecapatdnn_voxceleb12`
。
-
`sample_rate`
:音频采样率,默认值:
`16000`
。
-
`sample_rate`
:音频采样率,默认值:
`16000`
。
-
`config`
:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:
`None`
。
-
`config`
:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:
`None`
。
...
@@ -45,45 +51,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -45,45 +51,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
输出:
输出:
```
bash
```
bash
demo
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
demo
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-
11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-
9
.723131 0.6619743
-6
.976803 10.213478 7.494748
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.29473
7
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.40336
7
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-
22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
-
18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
15.999649 3.3004563 12.747926 15.429879 4.7849145
11.567354 3.69788 11.258265 7.442363 9.183411
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-
11
.54324 7.681869 0.44475392 9.708182
-8
.93284
6
-
4
.473626 7.6624317
-0
.55381083 9.631587
-6
.470455
6
0.4123232
-4
.361452 1.3948607 9.511665 0.1166765
4
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.975870
4
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
4.010979 11.000591
-2
.8873312 7.1352735
-16
.7966
3
-0
.31784213 9.493548 2.1144536 4.358092
-12
.08982
3
18.495346
-14
.293832 7.89578 2.2714825 22.976387
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-
11
.924197 2.171869 2.0423572
-6
.173772 10.778437
-
9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-
12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-
8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.2701402
-11
.508579
]
-3
.7760346
-11
.118123
]
```
```
-
Python API
-
Python API
...
@@ -98,53 +104,107 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
...
@@ -98,53 +104,107 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
ckpt_path
=
None
,
audio_file
=
'./85236145389.wav'
,
audio_file
=
'./85236145389.wav'
,
force_yes
=
False
,
device
=
paddle
.
get_device
())
device
=
paddle
.
get_device
())
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
test_emb
=
vector_executor
(
model
=
'ecapatdnn_voxceleb12'
,
sample_rate
=
16000
,
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
audio_file
=
'./123456789.wav'
,
device
=
paddle
.
get_device
())
print
(
'Test embedding Result:
\n
{}'
.
format
(
test_emb
))
score
=
vector_executor
.
get_embeddings_score
(
audio_emb
,
test_emb
)
print
(
f
"Eembeddings Score:
{
score
}
"
)
```
```
输出:
输出:
```
bash
```
bash
# Vector Result:
# Vector Result:
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
Audio embedding Result:
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
-11
.343508 2.3385992
-8
.719341 14.213509 15.404744
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-9
.723131 0.6619743
-6
.976803 10.213478 7.494748
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.294737
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.403367
-22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
-18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
-3
.539873 3.814236 5.1420674 2.162061 4.096431
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
15.999649 3.3004563 12.747926 15.429879 4.7849145
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
11.567354 3.69788 11.258265 7.442363 9.183411
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-11
.54324 7.681869 0.44475392 9.708182
-8
.932846
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
0.4123232
-4
.361452 1.3948607 9.511665 0.11667654
-4
.473626 7.6624317
-0
.55381083 9.631587
-6
.4704556
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.9758704
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
4.010979 11.000591
-2
.8873312 7.1352735
-16
.79663
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-0
.31784213 9.493548 2.1144536 4.358092
-12
.089823
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-11
.924197 2.171869 2.0423572
-6
.173772 10.778437
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
-8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
4.532936 2.7264361 10.145339
-6
.521951 2.897153
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
-3
.2701402
-11
.508579
]
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
# get the test embedding
Test embedding Result:
[
-1
.902964 2.0690894
-8
.034194 3.5472693 0.18089125
6.9085927 1.4097427
-1
.9487704
-10
.021278
-0
.20755845
-8
.04332 4.344489 2.3200977
-14
.306299 5.184692
-11
.55602
-3
.8497238 0.6444722 1.2833948 2.6766639
0.5878921 0.7946299 1.7207596 2.5791872 14.998469
-1
.3385371 15.031221
-0
.8006958 1.99287
-9
.52007
2.435466 4.003221
-4
.33817
-4
.898601
-5
.304714
-18
.033886 10.790787
-12
.784645
-5
.641755 2.9761686
-10
.566622 1.4839455 6.152458
-5
.7195854 2.8603241
6.112133 8.489869 5.5958056 1.2836679
-1
.2293907
0.89927405 7.0288725
-2
.854029
-0
.9782962 5.8255906
14.905906
-5
.025907 0.7866458
-4
.2444224
-16
.354029
10.521315 0.9604709
-3
.3257897 7.144871
-13
.592733
-8
.568869
-1
.7953678 0.26313916 10.916714
-6
.9374123
1.857403
-6
.2746415 2.8154466
-7
.2338667
-2
.293357
-0
.05452765 5.4287076 5.0849075
-6
.690375
-1
.6183422
3.654291 0.94352573
-9
.200294
-5
.4749465
-3
.5235846
1.3420814 4.240421
-2
.772944
-2
.8451524 16.311104
4.2969875
-1
.762936
-12
.5758915 8.595198
-0
.8835239
-1
.5708797 1.568961 1.1413603 3.5032008
-0
.45251232
-6
.786333 16.89443 5.3366146
-8
.789056 0.6355629
3.2579517
-3
.328322 7.5969577 0.66025066
-6
.550468
-9
.148656 2.020372
-0
.4615173 1.1965656
-3
.8764873
11.6562195
-6
.0750933 12.182899 3.2218833 0.81969476
5.570001
-3
.8459578
-7
.205299 7.9262037
-7
.6611166
-5
.249467
-2
.2671914 7.2658715
-13
.298164 4.821147
-2
.7263982 11.691089
-3
.8918593
-2
.838112
-1
.0336838
-3
.8034165 2.8536487
-5
.60398
-1
.1972581 1.3455094
-3
.4903061 2.2408795 5.5010734
-3
.970756 11.99696
-7
.8858757 0.43160373
-5
.5059714 4.3426995 16.322706
11.635366 0.72157705
-9
.245714
-3
.91465
-4
.449838
-1
.5716927 7.713747
-2
.2430465
-6
.198303
-13
.481864
2.8156567
-5
.7812386 5.1456156 2.7289324
-14
.505571
13.270688 3.448231
-7
.0659585 4.5886116
-4
.466099
-0
.296428
-11
.463529
-2
.6076477 14.110243
-6
.9725137
-1
.9962958 2.7119343 19.391657 0.01961198 14.607133
-1
.6695905
-4
.391516 1.3131028
-6
.670972
-5
.888604
12.0612335 5.9285784 3.3715196 1.492534 10.723728
-0
.95514804
-12
.085431
]
# get the score between enroll and test
Eembeddings Score: 0.4292638301849365
```
```
### 4.预训练模型
### 4.预训练模型
...
...
demos/speaker_verification/run.sh
浏览文件 @
d064c819
...
@@ -2,5 +2,5 @@
...
@@ -2,5 +2,5 @@
wget
-c
https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
wget
-c
https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
#
as
r
#
vecto
r
paddlespeech vector
--task
spk
--input
./85236145389.wav
paddlespeech vector
--task
spk
--input
./85236145389.wav
docs/source/released_model.md
浏览文件 @
d064c819
...
@@ -80,7 +80,7 @@ PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https
...
@@ -80,7 +80,7 @@ PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https
Model Type | Dataset| Example Link | Pretrained Models | Static Models
Model Type | Dataset| Example Link | Pretrained Models | Static Models
:-------------:| :------------:| :-----: | :-----: | :-----:
:-------------:| :------------:| :-----: | :-----: | :-----:
PANN | VoxCeleb|
[
voxceleb_ecapatdnn
](
https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0
)
|
[
ecapatdnn.tar.gz
](
https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
1_1
.tar.gz
)
| -
PANN | VoxCeleb|
[
voxceleb_ecapatdnn
](
https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0
)
|
[
ecapatdnn.tar.gz
](
https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
2_0
.tar.gz
)
| -
## Punctuation Restoration Models
## Punctuation Restoration Models
Model Type | Dataset| Example Link | Pretrained Models
Model Type | Dataset| Example Link | Pretrained Models
...
...
examples/voxceleb/sv0/RESULT.md
浏览文件 @
d064c819
...
@@ -4,4 +4,4 @@
...
@@ -4,4 +4,4 @@
| Model | Number of Params | Release | Config | dim | Test set | Cosine | Cosine + S-Norm |
| Model | Number of Params | Release | Config | dim | Test set | Cosine | Cosine + S-Norm |
| --- | --- | --- | --- | --- | --- | --- | ---- |
| --- | --- | --- | --- | --- | --- | --- | ---- |
| ECAPA-TDNN | 85M | 0.
1.1 | conf/ecapa_tdnn.yaml |192 | test | 1.15 | 1.06
|
| ECAPA-TDNN | 85M | 0.
2.0 | conf/ecapa_tdnn.yaml |192 | test | 1.02 | 0.95
|
paddlespeech/cli/vector/infer.py
浏览文件 @
d064c819
...
@@ -42,9 +42,9 @@ pretrained_models = {
...
@@ -42,9 +42,9 @@ pretrained_models = {
# "paddlespeech vector --task spk --model ecapatdnn_voxceleb12-16k --sr 16000 --input ./input.wav"
# "paddlespeech vector --task spk --model ecapatdnn_voxceleb12-16k --sr 16000 --input ./input.wav"
"ecapatdnn_voxceleb12-16k"
:
{
"ecapatdnn_voxceleb12-16k"
:
{
'url'
:
'url'
:
'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
1_1
.tar.gz'
,
'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
2_0
.tar.gz'
,
'md5'
:
'md5'
:
'
a1c0dba7d4de997187786ff517d5b4ec
'
,
'
cc33023c54ab346cd318408f43fcaf95
'
,
'cfg_path'
:
'cfg_path'
:
'conf/model.yaml'
,
# the yaml config path
'conf/model.yaml'
,
# the yaml config path
'ckpt_path'
:
'ckpt_path'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录