diff --git a/paddlespeech/server/engine/asr/online/asr_engine.py b/paddlespeech/server/engine/asr/online/asr_engine.py index 2e61bb4ed587e39a2d19f59d96b985d3bc27ef17..58cd34882e60e0d548f01ec7d9c088028ac7c206 100644 --- a/paddlespeech/server/engine/asr/online/asr_engine.py +++ b/paddlespeech/server/engine/asr/online/asr_engine.py @@ -13,7 +13,6 @@ # limitations under the License. import copy import os -import time from typing import Optional import numpy as np @@ -298,6 +297,7 @@ class PaddleASRConnectionHanddler: self.global_frame_offset = 0 self.result_transcripts = [''] self.first_char_occur_elapsed = None + self.word_time_stamp = None def decode(self, is_finished=False): if "deepspeech2online" in self.model_type: @@ -513,6 +513,12 @@ class PaddleASRConnectionHanddler: else: return '' + def get_word_time_stamp(self): + if self.word_time_stamp is None: + return [] + else: + return self.word_time_stamp + @paddle.no_grad() def rescoring(self): if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type: @@ -577,8 +583,35 @@ class PaddleASRConnectionHanddler: # update the one best result logger.info(f"best index: {best_index}") self.hyps = [hyps[best_index][0]] + + # update the hyps time stamp + self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[ + best_index][3] else hyps[best_index][6] + logger.info(f"time stamp: {self.time_stamp}") + self.update_result() + # update each word start and end time stamp + frame_shift_in_ms = self.model.encoder.embed.subsampling_rate * self.n_shift / self.sample_rate + logger.info(f"frame shift ms: {frame_shift_in_ms}") + word_time_stamp = [] + for idx, _ in enumerate(self.time_stamp): + start = (self.time_stamp[idx - 1] + self.time_stamp[idx] + ) / 2.0 if idx > 0 else 0 + start = start * frame_shift_in_ms + + end = (self.time_stamp[idx] + self.time_stamp[idx + 1] + ) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset + end = end * frame_shift_in_ms + word_time_stamp.append({ + "w": self.result_transcripts[0][idx], + "bg": start, + "ed": end + }) + # logger.info(f"{self.result_transcripts[0][idx]}, start: {start}, end: {end}") + self.word_time_stamp = word_time_stamp + logger.info(f"word time stamp: {self.word_time_stamp}") + class ASRServerExecutor(ASRExecutor): def __init__(self): diff --git a/paddlespeech/server/engine/asr/online/ctc_search.py b/paddlespeech/server/engine/asr/online/ctc_search.py index be5fb15bd7cc2d2a7adbced06be1ccb32a284a67..3a8085870d0f73703662aac152d808c0d280df09 100644 --- a/paddlespeech/server/engine/asr/online/ctc_search.py +++ b/paddlespeech/server/engine/asr/online/ctc_search.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import copy from collections import defaultdict import paddle @@ -54,14 +55,24 @@ class CTCPrefixBeamSearch: assert len(ctc_probs.shape) == 2 # cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score)) - # blank_ending_score and none_blank_ending_score in ln domain + # 0. blank_ending_score, + # 1. none_blank_ending_score, + # 2. viterbi_blank ending, + # 3. viterbi_non_blank, + # 4. current_token_prob, + # 5. times_viterbi_blank, + # 6. times_titerbi_non_blank if self.cur_hyps is None: - self.cur_hyps = [(tuple(), (0.0, -float('inf')))] + self.cur_hyps = [(tuple(), (0.0, -float('inf'), 0.0, 0.0, + -float('inf'), [], []))] + # self.cur_hyps = [(tuple(), (0.0, -float('inf')))] # 2. CTC beam search step by step for t in range(0, maxlen): logp = ctc_probs[t] # (vocab_size,) # key: prefix, value (pb, pnb), default value(-inf, -inf) - next_hyps = defaultdict(lambda: (-float('inf'), -float('inf'))) + # next_hyps = defaultdict(lambda: (-float('inf'), -float('inf'))) + next_hyps = defaultdict( + lambda: (-float('inf'), -float('inf'), -float('inf'), -float('inf'), -float('inf'), [], [])) # 2.1 First beam prune: select topk best # do token passing process @@ -69,36 +80,83 @@ class CTCPrefixBeamSearch: for s in top_k_index: s = s.item() ps = logp[s].item() - for prefix, (pb, pnb) in self.cur_hyps: + for prefix, (pb, pnb, v_s, v_ns, cur_token_prob, times_s, + times_ns) in self.cur_hyps: last = prefix[-1] if len(prefix) > 0 else None if s == blank_id: # blank - n_pb, n_pnb = next_hyps[prefix] + n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[ + prefix] n_pb = log_add([n_pb, pb + ps, pnb + ps]) - next_hyps[prefix] = (n_pb, n_pnb) + + pre_times = times_s if v_s > v_ns else times_ns + n_times_s = copy.deepcopy(pre_times) + viterbi_score = v_s if v_s > v_ns else v_ns + n_v_s = viterbi_score + ps + next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns, + n_cur_token_prob, n_times_s, + n_times_ns) elif s == last: # Update *ss -> *s; - n_pb, n_pnb = next_hyps[prefix] + # case1: *a + a => *a + n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[ + prefix] n_pnb = log_add([n_pnb, pnb + ps]) - next_hyps[prefix] = (n_pb, n_pnb) + if n_v_ns < v_ns + ps: + n_v_ns = v_ns + ps + if n_cur_token_prob < ps: + n_cur_token_prob = ps + n_times_ns = copy.deepcopy(times_ns) + n_times_ns[ + -1] = self.abs_time_step # 注意,这里要重新使用绝对时间 + next_hyps[prefix] = (n_pb, n_pnb, n_v_s, n_v_ns, + n_cur_token_prob, n_times_s, + n_times_ns) + # Update *s-s -> *ss, - is for blank + # Case 2: *aε + a => *aa n_prefix = prefix + (s, ) - n_pb, n_pnb = next_hyps[n_prefix] + n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_ns = next_hyps[ + n_prefix] + if n_v_ns < v_s + ps: + n_v_ns = v_s + ps + n_cur_token_prob = ps + n_times_ns = copy.deepcopy(times_s) + n_times_ns.append(self.abs_time_step) n_pnb = log_add([n_pnb, pb + ps]) - next_hyps[n_prefix] = (n_pb, n_pnb) + next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns, + n_cur_token_prob, n_times_s, + n_times_ns) else: + # Case 3: *a + b => *ab, *aε + b => *ab n_prefix = prefix + (s, ) - n_pb, n_pnb = next_hyps[n_prefix] + n_pb, n_pnb, n_v_s, n_v_ns, n_cur_token_prob, n_times_s, n_times_n = next_hyps[ + n_prefix] + viterbi_score = v_s if v_s > v_ns else v_ns + pre_times = times_s if v_s > v_ns else times_ns + if n_v_ns < viterbi_score + ps: + n_v_ns = viterbi_score + ps + n_cur_token_prob = ps + n_times_ns = copy.deepcopy(pre_times) + n_times_ns.append(self.abs_time_step) + n_pnb = log_add([n_pnb, pb + ps, pnb + ps]) - next_hyps[n_prefix] = (n_pb, n_pnb) + next_hyps[n_prefix] = (n_pb, n_pnb, n_v_s, n_v_ns, + n_cur_token_prob, n_times_s, + n_times_ns) # 2.2 Second beam prune next_hyps = sorted( next_hyps.items(), - key=lambda x: log_add(list(x[1])), + key=lambda x: log_add([x[1][0], x[1][1]]), reverse=True) self.cur_hyps = next_hyps[:beam_size] - self.hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in self.cur_hyps] + # 2.3 update the absolute time step + self.abs_time_step += 1 + # self.hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in self.cur_hyps] + self.hyps = [(y[0], log_add([y[1][0], y[1][1]]), y[1][2], y[1][3], + y[1][4], y[1][5], y[1][6]) for y in self.cur_hyps] + logger.info("ctc prefix search success") return self.hyps @@ -123,6 +181,7 @@ class CTCPrefixBeamSearch: """ self.cur_hyps = None self.hyps = None + self.abs_time_step = 0 def finalize_search(self): """do nothing in ctc_prefix_beam_search diff --git a/paddlespeech/server/ws/asr_socket.py b/paddlespeech/server/ws/asr_socket.py index 68686d3ddb76cda2d02821606b60a3b91e8bb946..0f7dcddda6c05cb169625e218c305c02d8530aa4 100644 --- a/paddlespeech/server/ws/asr_socket.py +++ b/paddlespeech/server/ws/asr_socket.py @@ -78,12 +78,14 @@ async def websocket_endpoint(websocket: WebSocket): connection_handler.decode(is_finished=True) connection_handler.rescoring() asr_results = connection_handler.get_result() + word_time_stamp = connection_handler.get_word_time_stamp() connection_handler.reset() resp = { "status": "ok", "signal": "finished", - 'result': asr_results + 'result': asr_results, + 'times': word_time_stamp } await websocket.send_json(resp) break