提交 c907a8de 编写于 作者: H huangyuxin

change all recipes

上级 5d6494de
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 0
ctc_grad_norm_type: instance
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 0
ctc_grad_norm_type: instance
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 1.9
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear #linear, mfcc, fbank
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear #linear, mfcc, fbank
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
model:
num_conv_layers: 2
num_rnn_layers: 5
rnn_layer_size: 1024
rnn_direction: forward # [forward, bidirect]
num_fc_layers: 0
fc_layers_size_list: -1,
use_gru: False
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 5
rnn_layer_size: 1024
rnn_direction: forward # [forward, bidirect]
num_fc_layers: 0
fc_layers_size_list: -1,
use_gru: False
blank_id: 0
training:
n_epoch: 65
accum_grad: 1
lr: 5e-4
lr_decay: 0.93
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
###########################################
# Training #
###########################################
n_epoch: 65
accum_grad: 1
lr: 5e-4
lr_decay: 0.93
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.2 #1.9
beta: 4.3
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10
chunk_batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.2 #1.9
beta: 4.3
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10
decode_batch_size: 128
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 1.9
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 10
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
jit_model_export_path=$2
model_type=$3
decode_config_path=$2
jit_model_export_path=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh > /dev/null 2>&1
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test_export.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${jit_model_export_path}.rsl \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
......
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
if [ $? -ne 0 ]; then
exit 1
fi
if [ ! -f ${audio_file} ]; then
echo "Plase input the right audio_file path"
exit 1
fi
# download language model
bash local/download_lm_ch.sh
if [ $? -ne 0 ]; then
exit 1
fi
python3 -u ${BIN_DIR}/test_hub.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
exit 0
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
......@@ -9,9 +9,10 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
......@@ -33,6 +34,7 @@ fi
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
......
......@@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml #conf/deepspeech2.yaml or conf/deepspeeech2_online.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline # offline or online
audio_file=data/demo_01_03.wav
......@@ -34,7 +35,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type}|| exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
......@@ -44,11 +45,11 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
fi
# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
fi
......@@ -54,8 +54,9 @@ test_manifest: data/manifest.test
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -74,7 +75,7 @@ subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2
......@@ -82,7 +83,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
......@@ -49,8 +49,9 @@ test_manifest: data/manifest.test
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: 'char'
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -69,7 +70,7 @@ subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2
......
......@@ -46,6 +46,7 @@ test_manifest: data/manifest.test
###########################################
unit_type: 'char'
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -59,13 +60,13 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 240
accum_grad: 2
......@@ -73,7 +74,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
......@@ -21,7 +21,7 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decode_batch_size ${batch_size}
......
......@@ -30,14 +30,14 @@ for type in attention ctc_greedy_search; do
# stream decoding only support batchsize=1
batch_size=1
else
batch_size=1
batch_size=64
fi
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......@@ -57,7 +57,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......
......@@ -43,7 +43,7 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.5
max_input_len: 20.0 # second
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
causal: true
use_dynamic_chunk: true
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
preprocess_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
training:
n_epoch: 240
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
causal: true
use_dynamic_chunk: true
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: true # simulate streaming inference. Defaults to False.
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
###########################################
# Training #
###########################################
n_epoch: 240
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.5
max_input_len: 20.0 # second
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.0
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 32
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 8000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 100 # 50 will be lowest
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
###########################################
# Training #
###########################################
n_epoch: 100 # 50 will be lowest
accum_grad: 4
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
process:
# extract kaldi fbank from PCM
- type: fbank_kaldi
fs: 16000
fs: 8000
n_mels: 80
n_shift: 160
win_length: 400
......
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: true # simulate streaming inference. Defaults to False.
\ No newline at end of file
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
ckpt_name=$(basename ${ckpt_prefxi})
......@@ -25,9 +26,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"
......
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
ckpt_name=$(basename ${ckpt_prefxi})
......@@ -30,10 +32,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......@@ -49,10 +52,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
......@@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=100
conf_path=conf/conformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=20
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
......@@ -31,12 +32,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
......
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 20
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 20
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
training:
n_epoch: 50
accum_grad: 1
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 1
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 30.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 15
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
###########################################
# Dataloader #
###########################################
batch_size: 15
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 20.0
delta_delta: False
dither: 1.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: False
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: False
blank_id: 0
training:
n_epoch: 50
accum_grad: 4
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 4
lr: 1e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
\ No newline at end of file
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.9
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
\ No newline at end of file
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
if [ $# != 5 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
......@@ -9,9 +9,10 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
audio_file=$5
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/
......@@ -33,6 +34,7 @@ fi
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
......
......@@ -6,6 +6,7 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=30
model_type=offline
audio_file=data/demo_002_en.wav
......@@ -33,7 +34,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
......@@ -43,5 +44,5 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
fi
......@@ -57,7 +57,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -70,8 +70,7 @@ batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
......@@ -85,10 +84,11 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 100
checkpoint:
kbest_n: 50
......
......@@ -50,7 +50,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -64,7 +64,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
......@@ -79,7 +78,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
......@@ -55,7 +55,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -69,7 +69,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
......@@ -84,7 +83,7 @@ global_grad_clip: 3.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
......@@ -49,7 +49,7 @@ vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
......@@ -63,7 +63,6 @@ batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
......@@ -78,7 +77,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
......@@ -21,7 +21,7 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decode_batch_size ${batch_size}
......
......@@ -53,7 +53,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......@@ -78,7 +78,7 @@ for type in ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......@@ -99,7 +99,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......
......@@ -50,7 +50,7 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_config ${decode_config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
......
decode_batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
# https://yaml.org/type/float.html
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
collator:
vocab_filepath: data/lang_char/train_960_unigram5000_units.txt
unit_type: spm
spm_model_prefix: data/lang_char/train_960_unigram5000
feat_dim: 83
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/train_960_unigram5000_units.txt
unit_type: spm
spm_model_prefix: data/lang_char/train_960_unigram5000
feat_dim: 83
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
preprocess_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
training:
n_epoch: 120
accum_grad: 2
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
log_interval: 1
checkpoint:
kbest_n: 50
latest_n: 5
optim: adam
optim_conf:
......@@ -79,23 +86,5 @@ scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
decoding:
batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path dict_path ckpt_path_prefix"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path dict_path ckpt_path_prefix"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
dict_path=$2
ckpt_prefix=$3
decode_config_path=$2
dict_path=$3
ckpt_prefix=$4
batch_size=1
output_dir=${ckpt_prefix}
......@@ -24,9 +25,10 @@ python3 -u ${BIN_DIR}/test.py \
--dict-path ${dict_path} \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result-file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"
......
......@@ -19,8 +19,9 @@ bpeprefix=data/lang_char/${train_set}_${bpemode}${nbpe}
bpemodel=${bpeprefix}.model
config_path=conf/transformer.yaml
decode_config_path=conf/decode/decode_base.yaml
dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
ckpt_prefix=
ckpt_prefix=exp/transformer/checkpoints/init
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
......@@ -79,11 +80,12 @@ for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_resco
--ngpu ${ngpu} \
--dict-path ${dict} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--checkpoint_path ${ckpt_prefix} \
--result-file ${decode_dir}/data.JOB.json \
--opts decoding.decoding_method ${dmethd} \
--opts decoding.batch_size ${batch_size} \
--opts data.test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
--opts decode.decoding_method ${dmethd} \
--opts decode.decode_batch_size ${batch_size} \
--opts test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel} --wer false ${decode_dir} ${dict}
......
......@@ -9,12 +9,14 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
dict_path=lang_char/train_960_unigram5000_units.txt
decode_conf_path=conf/decode/decode_base.yaml
dict_path=data/lang_char/train_960_unigram5000_units.txt
avg_num=10
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
avg_ckpt=init
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
......@@ -35,7 +37,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# attetion resocre decoder
./local/test.sh ${conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
./local/test.sh ${conf_path} ${decode_conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
......@@ -45,7 +47,7 @@ fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} ${dict_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
......
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 4333
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 4333
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.6
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 8
decode_batch_size: 32
error_rate_type: cer
decoding_method: ctc_beam_search
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
alpha: 2.6
beta: 5.0
beam_size: 300
cutoff_prob: 0.99
cutoff_top_n: 40
num_proc_bsearch: 8
\ No newline at end of file
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_ch.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
......@@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=2
......@@ -23,6 +24,6 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: .inf # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: .inf # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 28
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 1024
use_gru: True
share_rnn_weights: False
blank_id: 28
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.4
beta: 0.35
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
decode_batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 1.4
beta: 0.35
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
\ No newline at end of file
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
......@@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=0
......@@ -23,6 +24,6 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 1000.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
min_input_len: 0.0
max_input_len: 1000.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.npz
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 28
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 28
###########################################
# Training #
###########################################
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
training:
n_epoch: 80
accum_grad: 1
lr: 2e-3
lr_decay: 0.83
weight_decay: 1e-06
global_grad_clip: 3.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
decode_batch_size: 32
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
\ No newline at end of file
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
......@@ -5,6 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
gpus=1
......@@ -23,5 +24,5 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${v18_ckpt} ${model_type}|| exit -1
fi
......@@ -13,6 +13,7 @@
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from src_deepspeech2x.test_model import DeepSpeech2Tester as Tester
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.training.cli import default_argument_parser
......@@ -44,6 +45,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -233,11 +233,11 @@ class DeepSpeech2Model(nn.Layer):
"""
model = cls(feat_size=dataloader.collate_fn.feature_size,
dict_size=len(dataloader.collate_fn.vocab_list),
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
num_conv_layers=config.num_conv_layers,
num_rnn_layers=config.num_rnn_layers,
rnn_size=config.rnn_layer_size,
use_gru=config.use_gru,
share_rnn_weights=config.share_rnn_weights)
infos = Checkpoint().load_parameters(
model, checkpoint_path=checkpoint_path)
logger.info(f"checkpoint info: {infos}")
......@@ -250,7 +250,7 @@ class DeepSpeech2Model(nn.Layer):
Parameters
config: yacs.config.CfgNode
config.model
config
Returns
-------
DeepSpeech2Model
......
......@@ -64,7 +64,7 @@ class DeepSpeech2Trainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
train_conf = self.config.training
train_conf = self.config
start = time.time()
# forward
......@@ -98,7 +98,7 @@ class DeepSpeech2Trainer(Trainer):
iteration_time = time.time() - start
msg += "train time: {:>.3f}s, ".format(iteration_time)
msg += "batch size: {}, ".format(self.config.collator.batch_size)
msg += "batch size: {}, ".format(self.config.batch_size)
msg += "accum: {}, ".format(train_conf.accum_grad)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
......@@ -126,7 +126,7 @@ class DeepSpeech2Trainer(Trainer):
total_loss += float(loss) * num_utts
valid_losses['val_loss'].append(float(loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_loss'] = total_loss / num_seen_utts
......@@ -146,15 +146,15 @@ class DeepSpeech2Trainer(Trainer):
def setup_model(self):
config = self.config.clone()
config.defrost()
config.model.feat_size = self.train_loader.collate_fn.feature_size
#config.model.dict_size = self.train_loader.collate_fn.vocab_size
config.model.dict_size = len(self.train_loader.collate_fn.vocab_list)
config.feat_size = self.train_loader.collate_fn.feature_size
#config.dict_size = self.train_loader.collate_fn.vocab_size
config.dict_size = len(self.train_loader.collate_fn.vocab_list)
config.freeze()
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
if self.parallel:
......@@ -163,17 +163,13 @@ class DeepSpeech2Trainer(Trainer):
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
grad_clip = ClipGradByGlobalNormWithLog(
config.training.global_grad_clip)
grad_clip = ClipGradByGlobalNormWithLog(config.global_grad_clip)
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
learning_rate=config.lr, gamma=config.lr_decay, verbose=True)
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
weight_decay=paddle.regularizer.L2Decay(config.weight_decay),
grad_clip=grad_clip)
self.model = model
......@@ -184,59 +180,59 @@ class DeepSpeech2Trainer(Trainer):
def setup_dataloader(self):
config = self.config.clone()
config.defrost()
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
test_dataset = ManifestDataset.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
collate_fn_train = SpeechCollator.from_config(config)
config.collator.augmentation_config = ""
config.augmentation_config = ""
collate_fn_dev = SpeechCollator.from_config(config)
config.collator.keep_transcription_text = True
config.collator.augmentation_config = ""
config.keep_transcription_text = True
config.augmentation_config = ""
collate_fn_test = SpeechCollator.from_config(config)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev)
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=config.decode.decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_test)
......@@ -274,7 +270,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args):
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab_filepath=None)
unit_type=config.unit_type, vocab=None)
super().__init__(config, args)
def ordid2token(self, texts, texts_len):
......@@ -293,7 +289,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
texts,
texts_len,
fout=None):
cfg = self.config.decoding
cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
......@@ -399,31 +395,3 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
self.export()
except KeyboardInterrupt:
exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
if self.args.output:
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
else:
output_dir = Path(
self.args.checkpoint_path).expanduser().parent.parent
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.05 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 50
checkpoint:
kbest_n: 50
latest_n: 5
###########################################
# Training #
###########################################
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1.0e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 50
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
beam_size: 10
word_reward: 0.7
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
for type in fullsentence; do
echo "decoding ${type}"
......@@ -17,10 +18,11 @@ for type in fullsentence; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
......@@ -6,6 +6,7 @@ gpus=0,1,2,3
stage=0
stop_stage=50
conf_path=conf/transformer_mtl_noam.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=5
data_path=./TED_EnZh # path to unzipped data
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
......@@ -32,7 +33,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then
......
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train.tiny
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/bpe_unigram_8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
asr_weight: 0.0
ctc_weight: 0.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
###########################################
# Training #
###########################################
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 5.0 # frame
max_input_len: 3000.0 # frame
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.01
max_output_input_ratio: 20.0
collator:
vocab_filepath: data/lang_char/ted_en_zh_bpe8000.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/ted_en_zh_bpe8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/ted_en_zh_bpe8000.txt
unit_type: 'spm'
spm_model_prefix: data/lang_char/ted_en_zh_bpe8000
mean_std_filepath: ""
# augmentation_config: conf/augmentation.json
batch_size: 10
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 83
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file: None
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
asr_weight: 0.5
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
alpha: 2.5
beta: 0.3
beam_size: 10
word_reward: 0.7
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
###########################################
# Training #
###########################################
n_epoch: 20
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 2.5
weight_decay: 1.0e-06
scheduler: noam
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 5
checkpoint:
kbest_n: 50
latest_n: 5
batch_size: 5
error_rate_type: char-bleu
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
beam_size: 10
word_reward: 0.7
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
#! /usr/bin/env bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
for type in fullsentence; do
echo "decoding ${type}"
......@@ -17,10 +18,11 @@ for type in fullsentence; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
......@@ -7,6 +7,7 @@ gpus=0,1,2,3
stage=1
stop_stage=4
conf_path=conf/transformer_mtl_noam.yaml
decode_conf_path=conf/tuning/decode.yaml
ckpt_path= # paddle.98 # (finetune from FAT-ST pretrained model)
avg_num=5
data_path=./TED_EnZh # path to unzipped data
......@@ -38,5 +39,5 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_pat} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
\ No newline at end of file
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.0 # second
max_input_len: 10.0 # second
min_output_len: 0.0 # tokens
max_output_len: 150.0 # tokens
min_output_input_ratio: 0.005
max_output_input_ratio: 1000.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: "word"
mean_std_filepath: ""
augmentation_config: conf/preprocess.yaml
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
spm_model_prefix: ''
unit_type: "word"
mean_std_filepath: ""
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 128 # dimension of attention
attention_heads: 4
linear_units: 1024 # the number of units of position-wise feed forward
num_blocks: 6 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 128 # dimension of attention
attention_heads: 4
linear_units: 1024 # the number of units of position-wise feed forward
num_blocks: 6 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 1024
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 1024
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.5
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
ctc_weight: 0.5
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 50
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 1200
lr_decay: 1.0
log_interval: 10
checkpoint:
kbest_n: 50
latest_n: 5
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
###########################################
# Training #
###########################################
n_epoch: 50
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.004
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 1200
lr_decay: 1.0
log_interval: 10
checkpoint:
kbest_n: 50
latest_n: 5
decode_batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
batch_size=1
output_dir=${ckpt_prefix}
......@@ -20,9 +21,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"
......
......@@ -7,8 +7,8 @@ stop_stage=50
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -17,7 +17,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
......@@ -43,10 +44,11 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......@@ -63,10 +65,11 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......@@ -82,10 +85,11 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
......@@ -7,6 +7,7 @@ gpus=0,1,2,3
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=10
TIMIT_path=/path/to/TIMIT
......@@ -34,15 +35,15 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
# if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# # export ckpt avg_n
# CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
# fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
batch_size: 4
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
batch_size: 4
model:
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 3
rnn_layer_size: 2048
use_gru: False
share_rnn_weights: True
blank_id: 0
training:
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 0.8
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 0.8
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.0
max_input_len: 30.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
batch_size: 4
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/lang_char/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
spectrum_type: linear
feat_dim:
delta_delta: False
stride_ms: 10.0
window_ms: 20.0
n_fft: None
max_freq: None
target_sample_rate: 16000
use_dB_normalization: True
target_dB: -20
dither: 1.0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
batch_size: 4
model:
num_conv_layers: 2
num_rnn_layers: 4
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: True
blank_id: 0
############################################
# Network Architecture #
############################################
num_conv_layers: 2
num_rnn_layers: 4
rnn_layer_size: 2048
rnn_direction: forward
num_fc_layers: 2
fc_layers_size_list: 512, 256
use_gru: True
blank_id: 0
training:
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 1.0
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
lr: 1e-5
lr_decay: 1.0
weight_decay: 1e-06
global_grad_clip: 5.0
log_interval: 1
checkpoint:
kbest_n: 3
latest_n: 2
decoding:
batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
decode_batch_size: 128
error_rate_type: wer
decoding_method: ctc_beam_search
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 500
cutoff_prob: 1.0
cutoff_top_n: 40
num_proc_bsearch: 8
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix model_type"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
decode_config_path=$2
ckpt_prefix=$3
model_type=$4
# download language model
bash local/download_lm_en.sh
......@@ -21,6 +22,7 @@ fi
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
......
......@@ -6,6 +6,7 @@ gpus=0
stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
model_type=offline
......@@ -32,7 +33,7 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
......
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 30.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
causal: True
use_dynamic_chunk: True
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
causal: True
use_dynamic_chunk: True
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
augmentation_config: conf/preprocess.yaml
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
# network architecture
model:
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
use_dynamic_chunk: true
use_dynamic_left_chunk: false
############################################
# Network Architecture #
############################################
cmvn_file: "data/mean_std.json"
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
use_dynamic_chunk: true
use_dynamic_left_chunk: false
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
decoding:
batch_size: 64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 10
latest_n: 1
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
############################################
# Network Architecture #
############################################
......@@ -83,7 +41,41 @@ model_conf:
###########################################
# training #
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: ""
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# Training #
###########################################
n_epoch: 5
accum_grad: 4
......@@ -91,7 +83,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
# https://yaml.org/type/float.html
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
augmentation_config: conf/preprocess.yaml
batch_size: 4
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
############################################
# Network Architecture #
############################################
......@@ -74,9 +34,41 @@ model_conf:
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
###########################################
# Data #
###########################################
train_manifest: data/manifest.tiny
dev_manifest: data/manifest.tiny
test_manifest: data/manifest.tiny
###########################################
# Dataloader #
###########################################
mean_std_filepath: data/mean_std.json
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
preprocess_config: conf/preprocess.yaml
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 4
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
###########################################
# training #
# Training #
###########################################
n_epoch: 5
accum_grad: 1
......@@ -84,7 +76,7 @@ global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1e-06
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
......
decode_batch_size: 8 #64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
decode_batch_size: 8 #64
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
batch_size=1
output_dir=${ckpt_prefix}
......@@ -20,9 +21,10 @@ mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/alignment.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.batch_size ${batch_size}
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in ctc alignment!"
......
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
......@@ -33,10 +34,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......@@ -50,10 +52,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
......@@ -6,6 +6,7 @@ gpus=0
stage=0
stop_stage=50
conf_path=conf/transformer.yaml
decode_conf_path=conf/tuning/decode.yaml
avg_num=1
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
......@@ -31,12 +32,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=${gpus} ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 51 ] && [ ${stop_stage} -ge 51 ]; then
......
# network architecture
model:
# encoder related
encoder: conformer
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
cnn_module_norm: layer_norm
activation_type: swish
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
############################################
# Network Architecture #
############################################
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: conformer
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
cnn_module_norm: layer_norm
activation_type: swish
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
min_input_len: 0.1 # second
max_input_len: 12.0 # second
min_output_len: 1.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
collator:
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
spm_model_prefix: ''
augmentation_config: conf/preprocess.yaml
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
spectrum_type: fbank #linear, mfcc, fbank
feat_dim: 80
delta_delta: False
dither: 1.0
target_sample_rate: 16000
max_freq: None
n_fft: None
stride_ms: 10.0
window_ms: 25.0
use_dB_normalization: True
target_dB: -20
random_seed: 0
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 2
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: 'char'
preprocess_config: conf/preprocess.yaml
spm_model_prefix: ''
feat_dim: 80
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 64
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
training:
n_epoch: 240
accum_grad: 16
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 5000
lr_decay: 1.0
decoding:
batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
alpha: 2.5
beta: 0.3
beam_size: 10
cutoff_prob: 1.0
cutoff_top_n: 0
num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
###########################################
# Training #
###########################################
n_epoch: 240
accum_grad: 16
global_grad_clip: 5.0
log_interval: 100
checkpoint:
kbest_n: 50
latest_n: 5
optim: adam
optim_conf:
lr: 0.001
weight_decay: 1.0e-6
scheduler: warmuplr
scheduler_conf:
warmup_steps: 5000
lr_decay: 1.0
decode_batch_size: 128
error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
beam_size: 10
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
\ No newline at end of file
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
if [ $# != 3 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix"
exit -1
fi
......@@ -9,7 +9,8 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
decode_config_path=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
......@@ -36,10 +37,11 @@ for type in attention ctc_greedy_search; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......@@ -55,10 +57,11 @@ for type in ctc_prefix_beam_search attention_rescoring; do
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size}
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix audio_file"
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix audio_file"
exit -1
fi
......@@ -9,8 +9,9 @@ ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
audio_file=$3
decode_config_path=$2
ckpt_prefix=$3
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/zh/demo_01_03.wav -P data/
......@@ -43,10 +44,11 @@ for type in attention_rescoring; do
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size} \
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
......
......@@ -7,7 +7,7 @@ gpus=0,1,2,3,4,5,6,7
stage=0
stop_stage=100
conf_path=conf/conformer.yaml
decode_conf_path=conf/tuning/decode.yaml
average_checkpoint=true
avg_num=10
......@@ -36,12 +36,12 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# ctc alignment of test data
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
......@@ -51,5 +51,5 @@ fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi
......@@ -80,13 +80,13 @@ def inference(config, args):
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
config.augmentation_config = ""
config.keep_transcription_text = True
config.batch_size = 1
config.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
......@@ -105,14 +105,14 @@ def start_server(config, args):
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
decoding_method=config.decode.decoding_method,
lang_model_path=config.decode.lang_model_path,
beam_alpha=config.decode.alpha,
beam_beta=config.decode.beta,
beam_size=config.decode.beam_size,
cutoff_prob=config.decode.cutoff_prob,
cutoff_top_n=config.decode.cutoff_top_n,
num_processes=config.decode.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
......@@ -179,12 +179,16 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
args.warmup_manifest = config.test_manifest
print_arguments(args, globals())
if args.dump_config:
......
......@@ -33,13 +33,13 @@ from paddlespeech.s2t.utils.utility import print_arguments
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
config.augmentation_config = ""
config.keep_transcription_text = True
config.batch_size = 1
config.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
......@@ -62,14 +62,14 @@ def start_server(config, args):
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
decoding_method=config.decode.decoding_method,
lang_model_path=config.decode.lang_model_path,
beam_alpha=config.decode.alpha,
beam_beta=config.decode.beta,
beam_size=config.decode.beam_size,
cutoff_prob=config.decode.cutoff_prob,
cutoff_top_n=config.decode.cutoff_top_n,
num_processes=config.decode.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
......@@ -114,12 +114,16 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
args.warmup_manifest = config.test_manifest
print_arguments(args, globals())
if args.dump_config:
......
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2Tester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
......@@ -44,6 +46,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester
from paddlespeech.s2t.training.cli import default_argument_parser
......@@ -49,6 +51,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -18,6 +18,7 @@ from pathlib import Path
import paddle
import soundfile
from yacs.config import CfgNode
from paddlespeech.s2t.exps.deepspeech2.config import get_cfg_defaults
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
......@@ -41,7 +42,7 @@ class DeepSpeech2Tester_hub():
self.audio_file = args.audio_file
self.collate_fn_test = SpeechCollator.from_config(config)
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab=None)
unit_type=config.unit_type, vocab=None)
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
result_transcripts = self.model.decode(
......@@ -74,7 +75,7 @@ class DeepSpeech2Tester_hub():
audio = paddle.unsqueeze(audio, axis=0)
vocab_list = collate_fn_test.vocab_list
result_transcripts = self.compute_result_transcripts(
audio, audio_len, vocab_list, cfg.decoding)
audio, audio_len, vocab_list, cfg.decode)
logger.info("result_transcripts: " + result_transcripts[0])
def run_test(self):
......@@ -110,13 +111,13 @@ class DeepSpeech2Tester_hub():
def setup_model(self):
config = self.config.clone()
with UpdateConfig(config):
config.model.input_dim = self.collate_fn_test.feature_size
config.model.output_dim = self.collate_fn_test.vocab_size
config.input_dim = self.collate_fn_test.feature_size
config.output_dim = self.collate_fn_test.vocab_size
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
......@@ -134,8 +135,8 @@ class DeepSpeech2Tester_hub():
self.checkpoint_dir = checkpoint_dir
self.checkpoint = Checkpoint(
kbest_n=self.config.training.checkpoint.kbest_n,
latest_n=self.config.training.checkpoint.latest_n)
kbest_n=self.config.checkpoint.kbest_n,
latest_n=self.config.checkpoint.latest_n)
def resume(self):
"""Resume from the checkpoint at checkpoints in the output
......@@ -190,6 +191,10 @@ if __name__ == "__main__":
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -23,17 +23,6 @@ from paddlespeech.s2t.models.ds2_online import DeepSpeech2ModelOnline
def get_cfg_defaults(model_type='offline'):
_C = CfgNode()
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
if model_type == 'offline':
_C.model = DeepSpeech2Model.params()
else:
_C.model = DeepSpeech2ModelOnline.params()
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
config.set_new_allowed(True)
return config
......@@ -69,8 +69,8 @@ class DeepSpeech2Trainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
batch_size = self.config.collator.batch_size
accum_grad = self.config.training.accum_grad
batch_size = self.config.batch_size
accum_grad = self.config.accum_grad
start = time.time()
......@@ -133,7 +133,7 @@ class DeepSpeech2Trainer(Trainer):
total_loss += float(loss) * num_utts
valid_losses['val_loss'].append(float(loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_loss'] = total_loss / num_seen_utts
......@@ -154,16 +154,16 @@ class DeepSpeech2Trainer(Trainer):
config = self.config.clone()
with UpdateConfig(config):
if self.train:
config.model.input_dim = self.train_loader.collate_fn.feature_size
config.model.output_dim = self.train_loader.collate_fn.vocab_size
config.input_dim = self.train_loader.collate_fn.feature_size
config.output_dim = self.train_loader.collate_fn.vocab_size
else:
config.model.input_dim = self.test_loader.collate_fn.feature_size
config.model.output_dim = self.test_loader.collate_fn.vocab_size
config.input_dim = self.test_loader.collate_fn.feature_size
config.output_dim = self.test_loader.collate_fn.vocab_size
if self.args.model_type == 'offline':
model = DeepSpeech2Model.from_config(config.model)
model = DeepSpeech2Model.from_config(config)
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline.from_config(config.model)
model = DeepSpeech2ModelOnline.from_config(config)
else:
raise Exception("wrong model type")
if self.parallel:
......@@ -177,17 +177,13 @@ class DeepSpeech2Trainer(Trainer):
if not self.train:
return
grad_clip = ClipGradByGlobalNormWithLog(
config.training.global_grad_clip)
grad_clip = ClipGradByGlobalNormWithLog(config.global_grad_clip)
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
learning_rate=config.lr, gamma=config.lr_decay, verbose=True)
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
weight_decay=paddle.regularizer.L2Decay(config.weight_decay),
grad_clip=grad_clip)
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
......@@ -198,66 +194,67 @@ class DeepSpeech2Trainer(Trainer):
config.defrost()
if self.train:
# train
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
collate_fn_train = SpeechCollator.from_config(config)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
# dev
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = False
config.augmentation_config = ""
config.keep_transcription_text = False
collate_fn_dev = SpeechCollator.from_config(config)
self.valid_loader = DataLoader(
dev_dataset,
batch_size=int(config.collator.batch_size),
batch_size=int(config.batch_size),
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
logger.info("Setup train/valid Dataloader!")
else:
# test
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
test_dataset = ManifestDataset.from_config(config)
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.augmentation_config = ""
config.keep_transcription_text = True
collate_fn_test = SpeechCollator.from_config(config)
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_test,
num_workers=config.collator.num_workers)
num_workers=config.num_workers)
logger.info("Setup test Dataloader!")
......@@ -286,7 +283,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args):
super().__init__(config, args)
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type, vocab=None)
unit_type=config.unit_type, vocab=None)
def ordid2token(self, texts, texts_len):
""" ord() id to chr() chr """
......@@ -304,17 +301,17 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
texts,
texts_len,
fout=None):
cfg = self.config.decoding
decode_cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
errors_func = error_rate.char_errors if decode_cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if decode_cfg.error_rate_type == 'cer' else error_rate.wer
vocab_list = self.test_loader.collate_fn.vocab_list
target_transcripts = self.ordid2token(texts, texts_len)
result_transcripts = self.compute_result_transcripts(audio, audio_len,
vocab_list, cfg)
result_transcripts = self.compute_result_transcripts(
audio, audio_len, vocab_list, decode_cfg)
for utt, target, result in zip(utts, target_transcripts,
result_transcripts):
......@@ -327,29 +324,31 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("Current error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
logger.info(
"Current error rate [%s] = %f" %
(decode_cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins,
error_rate=errors_sum / len_refs,
error_rate_type=cfg.error_rate_type)
error_rate_type=decode_cfg.error_rate_type)
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
def compute_result_transcripts(self, audio, audio_len, vocab_list,
decode_cfg):
result_transcripts = self.model.decode(
audio,
audio_len,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
decoding_method=decode_cfg.decoding_method,
lang_model_path=decode_cfg.lang_model_path,
beam_alpha=decode_cfg.alpha,
beam_beta=decode_cfg.beta,
beam_size=decode_cfg.beam_size,
cutoff_prob=decode_cfg.cutoff_prob,
cutoff_top_n=decode_cfg.cutoff_top_n,
num_processes=decode_cfg.num_proc_bsearch)
return result_transcripts
......@@ -358,7 +357,6 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def test(self):
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with jsonlines.open(self.args.result_file, 'w') as fout:
......@@ -412,11 +410,10 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
if self.args.enable_auto_log is True:
from paddlespeech.s2t.utils.log import Autolog
self.autolog = Autolog(
batch_size=self.config.decoding.batch_size,
batch_size=self.config.decode.decode_batch_size,
model_name="deepspeech2",
model_precision="fp32").getlog()
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with jsonlines.open(self.args.result_file, 'w') as fout:
......@@ -441,7 +438,8 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
if self.args.enable_auto_log is True:
self.autolog.report()
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
def compute_result_transcripts(self, audio, audio_len, vocab_list,
decode_cfg):
if self.args.model_type == "online":
output_probs, output_lens = self.static_forward_online(audio,
audio_len)
......@@ -454,13 +452,15 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
self.predictor.clear_intermediate_tensor()
self.predictor.try_shrink_memory()
self.model.decoder.init_decode(cfg.alpha, cfg.beta, cfg.lang_model_path,
vocab_list, cfg.decoding_method)
self.model.decoder.init_decode(decode_cfg.alpha, decode_cfg.beta,
decode_cfg.lang_model_path, vocab_list,
decode_cfg.decoding_method)
result_transcripts = self.model.decoder.decode_probs(
output_probs, output_lens, vocab_list, cfg.decoding_method,
cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size,
cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch)
output_probs, output_lens, vocab_list, decode_cfg.decoding_method,
decode_cfg.lang_model_path, decode_cfg.alpha, decode_cfg.beta,
decode_cfg.beam_size, decode_cfg.cutoff_prob,
decode_cfg.cutoff_top_n, decode_cfg.num_proc_bsearch)
#replace the <space> with ' '
result_transcripts = [
self._text_featurizer.detokenize(sentence)
......@@ -531,12 +531,10 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
num_chunk = int(num_chunk)
chunk_state_h_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=x.dtype)
chunk_state_c_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=x.dtype)
input_names = self.predictor.get_input_names()
......
......@@ -43,9 +43,9 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_config:
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_config)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
......
......@@ -47,9 +47,9 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_config:
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_config)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
......
......@@ -38,7 +38,7 @@ class U2Infer():
self.config = config
self.audio_file = args.audio_file
self.preprocess_conf = config.augmentation_config
self.preprocess_conf = config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
......@@ -132,9 +132,9 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_config:
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_config)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
......
......@@ -21,15 +21,15 @@ from paddlespeech.s2t.models.u2 import U2Model
_C = CfgNode(new_allowed=True)
ManifestDataset.params(_C)
# ManifestDataset.params(_C)
SpeechCollator.params(_C)
# SpeechCollator.params(_C)
U2Model.params(_C)
# U2Model.params(_C)
U2Trainer.params(_C)
# U2Trainer.params(_C)
_C.decode = U2Tester.params()
# _C.decode = U2Tester.params()
def get_cfg_defaults():
......
......@@ -264,7 +264,7 @@ class U2Trainer(Trainer):
batch_frames_in=config.batch_frames_in,
batch_frames_out=config.batch_frames_out,
batch_frames_inout=config.batch_frames_inout,
preprocess_conf=config.augmentation_config,
preprocess_conf=config.preprocess_config,
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1)
......@@ -283,18 +283,20 @@ class U2Trainer(Trainer):
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
preprocess_conf=config.augmentation_config,
preprocess_conf=config.preprocess_config,
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1)
logger.info("Setup train/valid Dataloader!")
else:
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
# test dataset, return raw text
self.test_loader = BatchDataLoader(
json_file=config.test_manifest,
train_mode=False,
sortagrad=False,
batch_size=config.decode.decode_batch_size,
batch_size=decode_batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -304,7 +306,7 @@ class U2Trainer(Trainer):
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
preprocess_conf=config.augmentation_config,
preprocess_conf=config.preprocess_config,
n_iter_processes=1,
subsampling_factor=1,
num_encs=1)
......@@ -313,7 +315,7 @@ class U2Trainer(Trainer):
json_file=config.test_manifest,
train_mode=False,
sortagrad=False,
batch_size=config.decode.decode_batch_size,
batch_size=decode_batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -323,7 +325,7 @@ class U2Trainer(Trainer):
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
preprocess_conf=config.augmentation_config,
preprocess_conf=config.preprocess_config,
n_iter_processes=1,
subsampling_factor=1,
num_encs=1)
......@@ -557,7 +559,7 @@ class U2Tester(U2Trainer):
"ref_len":
len_refs,
"decode_method":
self.config.decoding_method,
self.config.decode.decoding_method,
})
f.write(data + '\n')
......
......@@ -44,77 +44,77 @@ class U2Trainer(Trainer):
def setup_dataloader(self):
config = self.config.clone()
config.defrost()
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
# train/valid dataset, return token ids
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
collate_fn_train = SpeechCollator.from_config(config)
config.collator.augmentation_config = ""
config.augmentation_config = ""
collate_fn_dev = SpeechCollator.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev,
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
# test dataset, return raw text
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
# filter test examples, will cause less examples, but no mismatch with training
# and can use large batch size , save training time, so filter test egs now.
config.data.min_input_len = 0.0 # second
config.data.max_input_len = float('inf') # second
config.data.min_output_len = 0.0 # tokens
config.data.max_output_len = float('inf') # tokens
config.data.min_output_input_ratio = 0.00
config.data.max_output_input_ratio = float('inf')
config.min_input_len = 0.0 # second
config.max_input_len = float('inf') # second
config.min_output_len = 0.0 # tokens
config.max_output_len = float('inf') # tokens
config.min_output_input_ratio = 0.00
config.max_output_input_ratio = float('inf')
test_dataset = ManifestDataset.from_config(config)
# return text ord id
config.collator.keep_transcription_text = True
config.collator.augmentation_config = ""
config.keep_transcription_text = True
config.augmentation_config = ""
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=config.decode.batch_size,
shuffle=False,
drop_last=False,
collate_fn=SpeechCollator.from_config(config))
# return text token id
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
self.align_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=config.decode.batch_size,
shuffle=False,
drop_last=False,
collate_fn=SpeechCollator.from_config(config))
......@@ -122,7 +122,7 @@ class U2Trainer(Trainer):
def setup_model(self):
config = self.config
model_conf = config.model
model_conf = config
with UpdateConfig(model_conf):
model_conf.input_dim = self.train_loader.collate_fn.feature_size
model_conf.output_dim = self.train_loader.collate_fn.vocab_size
......@@ -136,7 +136,7 @@ class U2Trainer(Trainer):
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
train_config = config.training
train_config = config
optim_type = train_config.optim
optim_conf = train_config.optim_conf
scheduler_type = train_config.scheduler
......@@ -156,7 +156,7 @@ class U2Trainer(Trainer):
config,
parameters,
lr_scheduler=None, ):
train_config = config.training
train_config = config
optim_type = train_config.optim
optim_conf = train_config.optim_conf
scheduler_type = train_config.scheduler
......@@ -182,7 +182,7 @@ class U2Trainer(Trainer):
def setup_updater(self):
output_dir = self.output_dir
config = self.config.training
config = self.config
updater = U2Updater(
model=self.model,
......
......@@ -69,6 +69,10 @@ if __name__ == "__main__":
config = CfgNode()
config.set_new_allowed(True)
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -80,7 +80,7 @@ class U2Trainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
train_conf = self.config.training
train_conf = self.config
start = time.time()
# forward
......@@ -122,7 +122,7 @@ class U2Trainer(Trainer):
if (batch_index + 1) % train_conf.log_interval == 0:
msg += "train time: {:>.3f}s, ".format(iteration_time)
msg += "batch size: {}, ".format(self.config.collator.batch_size)
msg += "batch size: {}, ".format(self.config.batch_size)
msg += "accum: {}, ".format(train_conf.accum_grad)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
......@@ -157,7 +157,7 @@ class U2Trainer(Trainer):
if ctc_loss:
valid_losses['val_ctc_loss'].append(float(ctc_loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_loss'] = total_loss / num_seen_utts
......@@ -186,7 +186,7 @@ class U2Trainer(Trainer):
self.before_train()
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.training.n_epoch:
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
try:
......@@ -235,10 +235,10 @@ class U2Trainer(Trainer):
config = self.config.clone()
# train/valid dataset, return token ids
self.train_loader = BatchDataLoader(
json_file=config.data.train_manifest,
json_file=config.train_manifest,
train_mode=True,
sortagrad=False,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -248,16 +248,16 @@ class U2Trainer(Trainer):
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
preprocess_conf=config.collator.augmentation_config,
n_iter_processes=config.collator.num_workers,
preprocess_conf=config.preprocess_config,
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1)
self.valid_loader = BatchDataLoader(
json_file=config.data.dev_manifest,
json_file=config.dev_manifest,
train_mode=False,
sortagrad=False,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -268,16 +268,18 @@ class U2Trainer(Trainer):
batch_frames_out=0,
batch_frames_inout=0,
preprocess_conf=None,
n_iter_processes=config.collator.num_workers,
n_iter_processes=config.num_workers,
subsampling_factor=1,
num_encs=1)
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
# test dataset, return raw text
self.test_loader = BatchDataLoader(
json_file=config.data.test_manifest,
json_file=config.test_manifest,
train_mode=False,
sortagrad=False,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -293,10 +295,10 @@ class U2Trainer(Trainer):
num_encs=1)
self.align_loader = BatchDataLoader(
json_file=config.data.test_manifest,
json_file=config.test_manifest,
train_mode=False,
sortagrad=False,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
maxlen_in=float('inf'),
maxlen_out=float('inf'),
minibatches=0,
......@@ -316,7 +318,7 @@ class U2Trainer(Trainer):
config = self.config
# model
model_conf = config.model
model_conf = config
with UpdateConfig(model_conf):
model_conf.input_dim = self.train_loader.feat_dim
model_conf.output_dim = self.train_loader.vocab_size
......@@ -392,9 +394,9 @@ class U2Tester(U2Trainer):
def __init__(self, config, args):
super().__init__(config, args)
self.text_feature = TextFeaturizer(
unit_type=self.config.collator.unit_type,
vocab=self.config.collator.vocab_filepath,
spm_model_prefix=self.config.collator.spm_model_prefix)
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
self.vocab_list = self.text_feature.vocab_list
def id2token(self, texts, texts_len, text_feature):
......@@ -413,10 +415,10 @@ class U2Tester(U2Trainer):
texts,
texts_len,
fout=None):
cfg = self.config.decoding
decode_cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
errors_func = error_rate.char_errors if decode_cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if decode_cfg.error_rate_type == 'cer' else error_rate.wer
start_time = time.time()
target_transcripts = self.id2token(texts, texts_len, self.text_feature)
......@@ -424,12 +426,12 @@ class U2Tester(U2Trainer):
audio,
audio_len,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
decoding_method=decode_cfg.decoding_method,
beam_size=decode_cfg.beam_size,
ctc_weight=decode_cfg.ctc_weight,
decoding_chunk_size=decode_cfg.decoding_chunk_size,
num_decoding_left_chunks=decode_cfg.num_decoding_left_chunks,
simulate_streaming=decode_cfg.simulate_streaming)
decode_time = time.time() - start_time
for i, (utt, target, result, rec_tids) in enumerate(
......@@ -449,15 +451,16 @@ class U2Tester(U2Trainer):
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
logger.info(
"One example error rate [%s] = %f" %
(decode_cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins, # num examples
error_rate=errors_sum / len_refs,
error_rate_type=cfg.error_rate_type,
error_rate_type=decode_cfg.error_rate_type,
num_frames=audio_len.sum().numpy().item(),
decode_time=decode_time)
......@@ -468,7 +471,7 @@ class U2Tester(U2Trainer):
self.model.eval()
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
stride_ms = self.config.collator.stride_ms
stride_ms = self.config.stride_ms
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
num_frames = 0.0
......@@ -519,15 +522,15 @@ class U2Tester(U2Trainer):
"ref_len":
len_refs,
"decode_method":
self.config.decoding.decoding_method,
self.config.decode.decoding_method,
})
f.write(data + '\n')
@paddle.no_grad()
def align(self):
ctc_utils.ctc_align(self.config, self.model, self.align_loader,
self.config.decoding.batch_size,
self.config.collator.stride_ms, self.vocab_list,
self.config.decode.decode_batch_size,
self.config.stride_ms, self.vocab_list,
self.args.result_file)
def load_inferspec(self):
......@@ -539,7 +542,7 @@ class U2Tester(U2Trainer):
"""
from paddlespeech.s2t.models.u2 import U2InferModel
infer_model = U2InferModel.from_pretrained(self.test_loader,
self.config.model.clone(),
self.config.clone(),
self.args.checkpoint_path)
feat_dim = self.test_loader.feat_dim
input_spec = [
......
......@@ -14,12 +14,14 @@
"""Evaluation for U2 model."""
import cProfile
from yacs.config import CfgNode
from paddlespeech.s2t.exps.u2_st.config import get_cfg_defaults
from paddlespeech.s2t.exps.u2_st.model import U2STTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.utility import print_arguments
# TODO(hui zhang): dynamic load
# TODO(hui zhang): dynamic load
def main_sp(config, args):
......@@ -35,7 +37,7 @@ def main(config, args):
if __name__ == "__main__":
parser = default_argument_parser()
# save asr result to
# save asr result to
parser.add_argument(
"--result_file", type=str, help="path of save the asr result")
args = parser.parse_args()
......@@ -45,6 +47,10 @@ if __name__ == "__main__":
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_conf = CfgNode(new_allowed=True)
decode_conf.merge_from_file(args.decode_cfg)
config.decode = decode_conf
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
......
......@@ -21,15 +21,15 @@ from paddlespeech.s2t.models.u2_st import U2STModel
_C = CfgNode()
_C.data = ManifestDataset.params()
# _C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
# _C.collator = SpeechCollator.params()
_C.model = U2STModel.params()
# _C.model = U2STModel.params()
_C.training = U2STTrainer.params()
# _C.training = U2STTrainer.params()
_C.decoding = U2STTester.params()
# _C.decoding = U2STTester.params()
def get_cfg_defaults():
......
......@@ -78,7 +78,7 @@ class U2STTrainer(Trainer):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
train_conf = self.config.training
train_conf = self.config
start = time.time()
# forward
utt, audio, audio_len, text, text_len = batch_data
......@@ -127,7 +127,7 @@ class U2STTrainer(Trainer):
if (batch_index + 1) % train_conf.log_interval == 0:
msg += "train time: {:>.3f}s, ".format(iteration_time)
msg += "batch size: {}, ".format(self.config.collator.batch_size)
msg += "batch size: {}, ".format(self.config.batch_size)
msg += "accum: {}, ".format(train_conf.accum_grad)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
......@@ -168,7 +168,7 @@ class U2STTrainer(Trainer):
if ctc_loss:
valid_losses['val_ctc_loss'].append(float(ctc_loss))
if (i + 1) % self.config.training.log_interval == 0:
if (i + 1) % self.config.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_st_loss'] = total_loss / num_seen_utts
......@@ -197,7 +197,7 @@ class U2STTrainer(Trainer):
self.before_train()
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.training.n_epoch:
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
try:
......@@ -245,91 +245,93 @@ class U2STTrainer(Trainer):
def setup_dataloader(self):
config = self.config.clone()
config.defrost()
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
# train/valid dataset, return token ids
config.data.manifest = config.data.train_manifest
config.manifest = config.train_manifest
train_dataset = ManifestDataset.from_config(config)
config.data.manifest = config.data.dev_manifest
config.manifest = config.dev_manifest
dev_dataset = ManifestDataset.from_config(config)
if config.model.model_conf.asr_weight > 0.:
if config.model_conf.asr_weight > 0.:
Collator = TripletSpeechCollator
TestCollator = SpeechCollator
else:
TestCollator = Collator = SpeechCollator
collate_fn_train = Collator.from_config(config)
config.collator.augmentation_config = ""
config.augmentation_config = ""
collate_fn_dev = Collator.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
sortagrad=config.sortagrad,
shuffle_method=config.shuffle_method)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.collator.batch_size,
batch_size=config.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev,
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
# test dataset, return raw text
config.data.manifest = config.data.test_manifest
config.manifest = config.test_manifest
# filter test examples, will cause less examples, but no mismatch with training
# and can use large batch size , save training time, so filter test egs now.
# config.data.min_input_len = 0.0 # second
# config.data.max_input_len = float('inf') # second
# config.data.min_output_len = 0.0 # tokens
# config.data.max_output_len = float('inf') # tokens
# config.data.min_output_input_ratio = 0.00
# config.data.max_output_input_ratio = float('inf')
# config.min_input_len = 0.0 # second
# config.max_input_len = float('inf') # second
# config.min_output_len = 0.0 # tokens
# config.max_output_len = float('inf') # tokens
# config.min_output_input_ratio = 0.00
# config.max_output_input_ratio = float('inf')
test_dataset = ManifestDataset.from_config(config)
# return text ord id
config.collator.keep_transcription_text = True
config.collator.augmentation_config = ""
config.keep_transcription_text = True
config.augmentation_config = ""
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=TestCollator.from_config(config),
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
# return text token id
config.collator.keep_transcription_text = False
config.keep_transcription_text = False
self.align_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
batch_size=decode_batch_size,
shuffle=False,
drop_last=False,
collate_fn=TestCollator.from_config(config),
num_workers=config.collator.num_workers, )
num_workers=config.num_workers, )
logger.info("Setup train/valid/test/align Dataloader!")
def setup_model(self):
config = self.config
model_conf = config.model
model_conf = config
with UpdateConfig(model_conf):
model_conf.input_dim = self.train_loader.collate_fn.feature_size
model_conf.output_dim = self.train_loader.collate_fn.vocab_size
......@@ -342,7 +344,7 @@ class U2STTrainer(Trainer):
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
train_config = config.training
train_config = config
optim_type = train_config.optim
optim_conf = train_config.optim_conf
scheduler_type = train_config.scheduler
......@@ -428,7 +430,7 @@ class U2STTester(U2STTrainer):
def translate(self, audio, audio_len):
""""E2E translation from extracted audio feature"""
cfg = self.config.decoding
decode_cfg = self.config.decode
text_feature = self.test_loader.collate_fn.text_feature
self.model.eval()
......@@ -436,12 +438,12 @@ class U2STTester(U2STTrainer):
audio,
audio_len,
text_feature=text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
word_reward=cfg.word_reward,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
decoding_method=decode_cfg.decoding_method,
beam_size=decode_cfg.beam_size,
word_reward=decode_cfg.word_reward,
decoding_chunk_size=decode_cfg.decoding_chunk_size,
num_decoding_left_chunks=decode_cfg.num_decoding_left_chunks,
simulate_streaming=decode_cfg.simulate_streaming)
return hyps
def compute_translation_metrics(self,
......@@ -452,7 +454,7 @@ class U2STTester(U2STTrainer):
texts_len,
bleu_func,
fout=None):
cfg = self.config.decoding
decode_cfg = self.config.decode
len_refs, num_ins = 0, 0
start_time = time.time()
......@@ -467,12 +469,12 @@ class U2STTester(U2STTrainer):
audio,
audio_len,
text_feature=text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
word_reward=cfg.word_reward,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
decoding_method=decode_cfg.decoding_method,
beam_size=decode_cfg.beam_size,
word_reward=decode_cfg.word_reward,
decoding_chunk_size=decode_cfg.decoding_chunk_size,
num_decoding_left_chunks=decode_cfg.num_decoding_left_chunks,
simulate_streaming=decode_cfg.simulate_streaming)
decode_time = time.time() - start_time
for utt, target, result in zip(utts, refs, hyps):
......@@ -502,8 +504,8 @@ class U2STTester(U2STTrainer):
self.model.eval()
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
cfg = self.config.decoding
bleu_func = bleu_score.char_bleu if cfg.error_rate_type == 'char-bleu' else bleu_score.bleu
decode_cfg = self.config.decode
bleu_func = bleu_score.char_bleu if decode_cfg.error_rate_type == 'char-bleu' else bleu_score.bleu
stride_ms = self.test_loader.collate_fn.stride_ms
hyps, refs = [], []
......@@ -549,15 +551,15 @@ class U2STTester(U2STTrainer):
"num_examples":
num_ins,
"decode_method":
self.config.decoding.decoding_method,
self.config.decode.decoding_method,
})
f.write(data + '\n')
@paddle.no_grad()
def align(self):
ctc_utils.ctc_align(self.config, self.model, self.align_loader,
self.config.decoding.batch_size,
self.config.collator.stride_ms, self.vocab_list,
self.config.decode.decode_batch_size,
self.config.stride_ms, self.vocab_list,
self.args.result_file)
def load_inferspec(self):
......@@ -569,7 +571,7 @@ class U2STTester(U2STTrainer):
"""
from paddlespeech.s2t.models.u2 import U2InferModel
infer_model = U2InferModel.from_pretrained(self.test_loader,
self.config.model.clone(),
self.config.clone(),
self.args.checkpoint_path)
feat_dim = self.test_loader.collate_fn.feature_size
input_spec = [
......
......@@ -256,45 +256,43 @@ class SpeechCollator(SpeechCollatorBase):
Returns:
SpeechCollator: collator object.
"""
assert 'augmentation_config' in config.collator
assert 'keep_transcription_text' in config.collator
assert 'mean_std_filepath' in config.collator
assert 'vocab_filepath' in config.collator
assert 'spectrum_type' in config.collator
assert 'n_fft' in config.collator
assert config.collator
if isinstance(config.collator.augmentation_config, (str, bytes)):
if config.collator.augmentation_config:
assert 'augmentation_config' in config
assert 'keep_transcription_text' in config
assert 'mean_std_filepath' in config
assert 'vocab_filepath' in config
assert 'spectrum_type' in config
assert 'n_fft' in config
assert config
if isinstance(config.augmentation_config, (str, bytes)):
if config.augmentation_config:
aug_file = io.open(
config.collator.augmentation_config,
mode='r',
encoding='utf8')
config.augmentation_config, mode='r', encoding='utf8')
else:
aug_file = io.StringIO(initial_value='{}', newline='')
else:
aug_file = config.collator.augmentation_config
aug_file = config.augmentation_config
assert isinstance(aug_file, io.StringIO)
speech_collator = cls(
aug_file=aug_file,
random_seed=0,
mean_std_filepath=config.collator.mean_std_filepath,
unit_type=config.collator.unit_type,
vocab_filepath=config.collator.vocab_filepath,
spm_model_prefix=config.collator.spm_model_prefix,
spectrum_type=config.collator.spectrum_type,
feat_dim=config.collator.feat_dim,
delta_delta=config.collator.delta_delta,
stride_ms=config.collator.stride_ms,
window_ms=config.collator.window_ms,
n_fft=config.collator.n_fft,
max_freq=config.collator.max_freq,
target_sample_rate=config.collator.target_sample_rate,
use_dB_normalization=config.collator.use_dB_normalization,
target_dB=config.collator.target_dB,
dither=config.collator.dither,
keep_transcription_text=config.collator.keep_transcription_text)
mean_std_filepath=config.mean_std_filepath,
unit_type=config.unit_type,
vocab_filepath=config.vocab_filepath,
spm_model_prefix=config.spm_model_prefix,
spectrum_type=config.spectrum_type,
feat_dim=config.feat_dim,
delta_delta=config.delta_delta,
stride_ms=config.stride_ms,
window_ms=config.window_ms,
n_fft=config.n_fft,
max_freq=config.max_freq,
target_sample_rate=config.target_sample_rate,
use_dB_normalization=config.use_dB_normalization,
target_dB=config.target_dB,
dither=config.dither,
keep_transcription_text=config.keep_transcription_text)
return speech_collator
......
......@@ -54,17 +54,17 @@ class ManifestDataset(Dataset):
Returns:
ManifestDataset: dataet object.
"""
assert 'manifest' in config.data
assert config.data.manifest
assert 'manifest' in config
assert config.manifest
dataset = cls(
manifest_path=config.data.manifest,
max_input_len=config.data.max_input_len,
min_input_len=config.data.min_input_len,
max_output_len=config.data.max_output_len,
min_output_len=config.data.min_output_len,
max_output_input_ratio=config.data.max_output_input_ratio,
min_output_input_ratio=config.data.min_output_input_ratio, )
manifest_path=config.manifest,
max_input_len=config.max_input_len,
min_input_len=config.min_input_len,
max_output_len=config.max_output_len,
min_output_len=config.min_output_len,
max_output_input_ratio=config.max_output_input_ratio,
min_output_input_ratio=config.min_output_input_ratio, )
return dataset
def __init__(self,
......
......@@ -221,12 +221,12 @@ class DeepSpeech2Model(nn.Layer):
model = cls(
feat_size=dataloader.collate_fn.feature_size,
dict_size=dataloader.collate_fn.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights,
blank_id=config.model.blank_id,
num_conv_layers=config.num_conv_layers,
num_rnn_layers=config.num_rnn_layers,
rnn_size=config.rnn_layer_size,
use_gru=config.use_gru,
share_rnn_weights=config.share_rnn_weights,
blank_id=config.blank_id,
ctc_grad_norm_type=config.get('ctc_grad_norm_type', None), )
infos = Checkpoint().load_parameters(
model, checkpoint_path=checkpoint_path)
......@@ -240,7 +240,7 @@ class DeepSpeech2Model(nn.Layer):
Parameters
config: yacs.config.CfgNode
config.model
config
Returns
-------
DeepSpeech2Model
......
......@@ -353,14 +353,14 @@ class DeepSpeech2ModelOnline(nn.Layer):
model = cls(
feat_size=dataloader.collate_fn.feature_size,
dict_size=dataloader.collate_fn.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
rnn_direction=config.model.rnn_direction,
num_fc_layers=config.model.num_fc_layers,
fc_layers_size_list=config.model.fc_layers_size_list,
use_gru=config.model.use_gru,
blank_id=config.model.blank_id,
num_conv_layers=config.num_conv_layers,
num_rnn_layers=config.num_rnn_layers,
rnn_size=config.rnn_layer_size,
rnn_direction=config.rnn_direction,
num_fc_layers=config.num_fc_layers,
fc_layers_size_list=config.fc_layers_size_list,
use_gru=config.use_gru,
blank_id=config.blank_id,
ctc_grad_norm_type=config.get('ctc_grad_norm_type', None), )
infos = Checkpoint().load_parameters(
model, checkpoint_path=checkpoint_path)
......@@ -374,7 +374,7 @@ class DeepSpeech2ModelOnline(nn.Layer):
Parameters
config: yacs.config.CfgNode
config.model
config
Returns
-------
DeepSpeech2ModelOnline
......
......@@ -101,7 +101,7 @@ def default_argument_parser(parser=None):
title='Test Options', description=None)
test_group.add_argument(
"--decode_config",
"--decode_cfg",
metavar="DECODE_CONFIG_FILE",
help="decode config file.")
......
......@@ -22,6 +22,7 @@ sed -i "s/ accum_grad: 2/ accum_grad: 1/g" conf/benchmark/conformer.yaml
fp_item_list=(fp32)
bs_item=(16)
config_path=conf/benchmark/conformer.yaml
decode_config_path=conf/tuning/decode.yaml
seed=0
output=exp/conformer
profiler_options=None
......@@ -34,13 +35,13 @@ for fp_item in ${fp_item_list[@]}; do
echo "index is speed, 8gpus, run_mode is multi_process, begin, conformer"
run_mode=mp
ngpu=8
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_8gpus8p 2>&1
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${decode_config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_8gpus8p 2>&1
sleep 60
log_name=speech_${model_item}_bs${bs_item}_${fp_item} # 如:clas_MobileNetv1_mp_bs32_fp32_8
echo "index is speed, 1gpus, begin, ${log_name}"
run_mode=sp
ngpu=1
CUDA_VISIBLE_DEVICES=0 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_1gpus 2>&1 # (5min)
CUDA_VISIBLE_DEVICES=0 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${decode_config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_1gpus 2>&1 # (5min)
sleep 60
done
done
......
......@@ -5,13 +5,14 @@ function _set_params(){
run_mode=${1:-"sp"} # 单卡sp|多卡mp
config_path=${2:-"conf/conformer.yaml"}
output=${3:-"exp/conformer"}
seed=${4:-"0"}
ngpu=${5:-"1"}
profiler_options=${6:-"None"}
batch_size=${7:-"32"}
fp_item=${8:-"fp32"}
model_item=${9:-"conformer"}
decode_config_path=${3:-"conf/tuning/decode.yaml"}
output=${4:-"exp/conformer"}
seed=${5:-"0"}
ngpu=${6:-"1"}
profiler_options=${7:-"None"}
batch_size=${8:-"32"}
fp_item=${9:-"fp32"}
model_item=${10:-"conformer"}
benchmark_max_step=0
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
# 添加日志解析需要的参数
......@@ -35,6 +36,7 @@ function _train(){
echo "Train on ${num_gpu_devices} GPUs"
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
train_cmd="--config=${config_path} \
--decode_cfg=${decode_config_path} \
--output=${output} \
--seed=${seed} \
--ngpu=${ngpu} \
......@@ -68,7 +70,7 @@ function _train(){
}
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params $@
# _train # 如果只想产出训练log,不解析,可取消注释
#_set_params $@
#_train # 如果只想产出训练log,不解析,可取消注释
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
......@@ -21,13 +21,13 @@ null:null
null:null
##
===========================eval_params===========================
eval: ../../../paddlespeech/s2t/exps/deepspeech2/bin/test.py --ngpu 1 --config conf/deepspeech2.yaml --checkpoint_path exp/deepspeech_tiny/checkpoints/9 --result_file tests/9.rsl --model_type offline
eval: ../../../paddlespeech/s2t/exps/deepspeech2/bin/test.py --ngpu 1 --config conf/deepspeech2.yaml --decode_cfg conf/tuning/decode.yaml --checkpoint_path exp/deepspeech_tiny/checkpoints/4 --result_file tests/4.rsl --model_type offline
null:null
##
===========================infer_params===========================
null:null
null:null
norm_export: ../../../paddlespeech/s2t/exps/deepspeech2/bin/export.py --ngpu 1 --config conf/deepspeech2.yaml --model_type offline --checkpoint_path exp/deepspeech_tiny/checkpoints/9 --export_path exp/deepspeech_tiny/checkpoints/9.jit
norm_export: ../../../paddlespeech/s2t/exps/deepspeech2/bin/export.py --ngpu 1 --config conf/deepspeech2.yaml --model_type offline --checkpoint_path exp/deepspeech_tiny/checkpoints/4 --export_path exp/deepspeech_tiny/checkpoints/4.jit
quant_export:null
fpgm_export:null
distill_export:null
......
......@@ -21,7 +21,7 @@ null:null
null:null
##
===========================eval_params===========================
eval: ../../../paddlespeech/s2t/exps/deepspeech2/bin/test.py --ngpu 1 --config conf/deepspeech2.yaml --result_file tests/49.rsl --checkpoint_path exp/deepspeech_whole/checkpoints/49 --model_type offline
eval: ../../../paddlespeech/s2t/exps/deepspeech2/bin/test.py --ngpu 1 --config conf/deepspeech2.yaml --decode_cfg conf/tuning/decode.yaml --result_file tests/49.rsl --checkpoint_path exp/deepspeech_whole/checkpoints/49 --model_type offline
null:null
##
===========================infer_params===========================
......
bash prepare.sh ds2_params_lite_train_infer.txt lite_train_infer
cd ../../examples/tiny/s0
cd ../../../examples/tiny/asr0
source path.sh
bash ../../../tests/chains/test.sh ../../../tests/chains/ds2_params_lite_train_infer.txt lite_train_infer
bash ../../../tests/chains/ds2/test.sh ../../../tests/chains/ds2/ds2_params_lite_train_infer.txt lite_train_infer
cd ../../../tests/chains
......@@ -34,7 +34,7 @@ MODE=$2
if [ ${MODE} = "lite_train_infer" ];then
# pretrain lite train data
curPath=$(readlink -f "$(dirname "$0")")
cd ${curPath}/../../examples/tiny/s0
cd ${curPath}/../../../examples/tiny/asr0
source path.sh
# download audio data
bash ./local/data.sh || exit -1
......@@ -47,7 +47,7 @@ if [ ${MODE} = "lite_train_infer" ];then
elif [ ${MODE} = "whole_train_infer" ];then
curPath=$(readlink -f "$(dirname "$0")")
cd ${curPath}/../../examples/aishell/s0
cd ${curPath}/../../../examples/aishell/asr0
source path.sh
# download audio data
bash ./local/data.sh || exit -1
......@@ -59,7 +59,7 @@ elif [ ${MODE} = "whole_train_infer" ];then
cd ${curPath}
elif [ ${MODE} = "whole_infer" ];then
curPath=$(readlink -f "$(dirname "$0")")
cd ${curPath}/../../examples/aishell/s0
cd ${curPath}/../../../examples/aishell/asr0
source path.sh
# download audio data
bash ./local/data.sh || exit -1
......@@ -71,7 +71,7 @@ elif [ ${MODE} = "whole_infer" ];then
cd ${curPath}
else
curPath=$(readlink -f "$(dirname "$0")")
cd ${curPath}/../../examples/aishell/s0
cd ${curPath}/../../../examples/aishell/asr0
source path.sh
# download audio data
bash ./local/data.sh || exit -1
......
......@@ -324,6 +324,7 @@ else
gsu=${gpu//,/ }
nump=`echo $gsu | wc -w`
cmd="${python} ${run_train} --ngpu=$nump"
export CUDA_VISIBLE_DEVICES=${gpu}
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
fi
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册