Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
c4df6bac
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
1 年多 前同步成功
通知
207
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c4df6bac
编写于
4月 29, 2021
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add librispeech scripts
上级
497cf4e2
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
111 addition
and
65 deletion
+111
-65
examples/librispeech/s1/conf/chunk_confermer.yaml
examples/librispeech/s1/conf/chunk_confermer.yaml
+3
-3
examples/librispeech/s1/conf/chunk_transformer.yaml
examples/librispeech/s1/conf/chunk_transformer.yaml
+4
-4
examples/librispeech/s1/conf/conformer.yaml
examples/librispeech/s1/conf/conformer.yaml
+11
-11
examples/librispeech/s1/conf/transformer.yaml
examples/librispeech/s1/conf/transformer.yaml
+5
-5
examples/librispeech/s1/local/avg.sh
examples/librispeech/s1/local/avg.sh
+3
-3
examples/librispeech/s1/local/data.sh
examples/librispeech/s1/local/data.sh
+18
-15
examples/librispeech/s1/local/export.sh
examples/librispeech/s1/local/export.sh
+11
-1
examples/librispeech/s1/local/train.sh
examples/librispeech/s1/local/train.sh
+1
-0
examples/librispeech/s1/run.sh
examples/librispeech/s1/run.sh
+28
-12
examples/tiny/s1/run.sh
examples/tiny/s1/run.sh
+27
-11
未找到文件。
examples/librispeech/s1/conf/chunk_confermer.yaml
浏览文件 @
c4df6bac
...
...
@@ -79,7 +79,7 @@ model:
training
:
n_epoch
:
20
n_epoch
:
1
20
accum_grad
:
1
global_grad_clip
:
5.0
optim
:
adam
...
...
@@ -90,11 +90,11 @@ training:
scheduler_conf
:
warmup_steps
:
25000
lr_decay
:
1.0
log_interval
:
1
log_interval
:
1
00
decoding
:
batch_size
:
64
batch_size
:
128
error_rate_type
:
wer
decoding_method
:
attention
# 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path
:
data/lm/common_crawl_00.prune01111.trie.klm
...
...
examples/librispeech/s1/conf/chunk_transformer.yaml
浏览文件 @
c4df6bac
...
...
@@ -8,7 +8,7 @@ data:
spm_model_prefix
:
'
data/bpe_unigram_200'
mean_std_filepath
:
"
"
augmentation_config
:
conf/augmentation.json
batch_size
:
4
batch_size
:
6
4
min_input_len
:
0.5
# second
max_input_len
:
20.0
# second
min_output_len
:
0.0
# tokens
...
...
@@ -72,18 +72,18 @@ model:
training
:
n_epoch
:
20
n_epoch
:
1
20
accum_grad
:
1
global_grad_clip
:
5.0
optim
:
adam
optim_conf
:
lr
:
0.00
2
lr
:
0.00
1
weight_decay
:
1e-06
scheduler
:
warmuplr
# pytorch v1.1.0+ required
scheduler_conf
:
warmup_steps
:
25000
lr_decay
:
1.0
log_interval
:
1
log_interval
:
1
00
decoding
:
...
...
examples/librispeech/s1/conf/conformer.yaml
浏览文件 @
c4df6bac
...
...
@@ -5,14 +5,14 @@ data:
test_manifest
:
data/manifest.tiny
vocab_filepath
:
data/vocab.txt
unit_type
:
'
spm'
spm_model_prefix
:
'
data/bpe_unigram_
2
00'
spm_model_prefix
:
'
data/bpe_unigram_
50
00'
mean_std_filepath
:
"
"
augmentation_config
:
conf/augmentation.json
batch_size
:
4
min_input_len
:
0.5
max_input_len
:
20.0
min_output_len
:
0.0
max_output_len
:
400.0
batch_size
:
6
4
min_input_len
:
0.5
# seconds
max_input_len
:
20.0
# seconds
min_output_len
:
0.0
# tokens
max_output_len
:
400.0
# tokens
min_output_input_ratio
:
0.05
max_output_input_ratio
:
10.0
raw_wav
:
True
# use raw_wav or kaldi feature
...
...
@@ -49,7 +49,7 @@ model:
positional_dropout_rate
:
0.1
attention_dropout_rate
:
0.0
input_layer
:
conv2d
# encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before
:
t
rue
normalize_before
:
T
rue
use_cnn_module
:
True
cnn_module_kernel
:
15
activation_type
:
'
swish'
...
...
@@ -75,18 +75,18 @@ model:
training
:
n_epoch
:
20
accum_grad
:
4
n_epoch
:
1
20
accum_grad
:
2
global_grad_clip
:
5.0
optim
:
adam
optim_conf
:
lr
:
0.00
2
lr
:
0.00
4
weight_decay
:
1e-06
scheduler
:
warmuplr
# pytorch v1.1.0+ required
scheduler_conf
:
warmup_steps
:
25000
lr_decay
:
1.0
log_interval
:
1
log_interval
:
1
00
decoding
:
...
...
examples/librispeech/s1/conf/transformer.yaml
浏览文件 @
c4df6bac
...
...
@@ -8,7 +8,7 @@ data:
spm_model_prefix
:
'
data/bpe_unigram_200'
mean_std_filepath
:
"
"
augmentation_config
:
conf/augmentation.json
batch_size
:
4
batch_size
:
6
4
min_input_len
:
0.5
# second
max_input_len
:
20.0
# second
min_output_len
:
0.0
# tokens
...
...
@@ -70,18 +70,18 @@ model:
training
:
n_epoch
:
20
accum_grad
:
1
n_epoch
:
1
20
accum_grad
:
2
global_grad_clip
:
5.0
optim
:
adam
optim_conf
:
lr
:
0.00
2
lr
:
0.00
4
weight_decay
:
1e-06
scheduler
:
warmuplr
# pytorch v1.1.0+ required
scheduler_conf
:
warmup_steps
:
25000
lr_decay
:
1.0
log_interval
:
1
log_interval
:
1
00
decoding
:
...
...
examples/librispeech/s1/local/avg.sh
浏览文件 @
c4df6bac
#! /usr/bin/env bash
if
[
$#
!=
2
]
;
then
if
[
$#
!=
2
]
;
then
echo
"usage:
${
0
}
ckpt_dir avg_num"
exit
-1
fi
...
...
examples/librispeech/s1/local/data.sh
浏览文件 @
c4df6bac
...
...
@@ -4,7 +4,7 @@ stage=-1
stop_stage
=
100
# bpemode (unigram or bpe)
nbpe
=
2
00
nbpe
=
50
00
bpemode
=
unigram
bpeprefix
=
"data/bpe_
${
bpemode
}
_
${
nbpe
}
"
...
...
@@ -20,14 +20,16 @@ if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
python3
${
TARGET_DIR
}
/librispeech/librispeech.py
\
--manifest_prefix
=
"data/manifest"
\
--target_dir
=
"
${
TARGET_DIR
}
/librispeech"
\
--full_download
=
"
Fals
e"
--full_download
=
"
Tru
e"
if
[
$?
-ne
0
]
;
then
echo
"Prepare LibriSpeech failed. Terminated."
exit
1
fi
head
-n
64 data/manifest.dev-clean
>
data/manifest.tiny.raw
for
set
in
train-clean-100 train-clean-360 train-other-500
;
do
cat
data/manifest.
${
set
}
>>
data/manifest.train.raw
done
fi
if
[
${
stage
}
-le
0
]
&&
[
${
stop_stage
}
-ge
0
]
;
then
...
...
@@ -38,7 +40,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
--spm_mode
${
bpemode
}
\
--spm_model_prefix
${
bpeprefix
}
\
--vocab_path
=
"data/vocab.txt"
\
--manifest_paths
=
"data/manifest.t
iny
.raw"
--manifest_paths
=
"data/manifest.t
rain
.raw"
if
[
$?
-ne
0
]
;
then
echo
"Build vocabulary failed. Terminated."
...
...
@@ -49,16 +51,17 @@ fi
if
[
${
stage
}
-le
1
]
&&
[
${
stop_stage
}
-ge
1
]
;
then
# compute mean and stddev for normalizer
num_workers
=
$(
nproc
)
python3
${
MAIN_ROOT
}
/utils/compute_mean_std.py
\
--manifest_path
=
"data/manifest.t
iny
.raw"
\
--num_samples
=
64
\
--manifest_path
=
"data/manifest.t
rain
.raw"
\
--num_samples
=
-1
\
--specgram_type
=
"fbank"
\
--feat_dim
=
80
\
--delta_delta
=
false
\
--sample_rate
=
16000
\
--stride_ms
=
10.0
\
--window_ms
=
25.0
\
--num_workers
=
2
\
--num_workers
=
${
num_workers
}
\
--output_path
=
"data/mean_std.json"
if
[
$?
-ne
0
]
;
then
...
...
@@ -76,8 +79,8 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
--unit_type
"spm"
\
--spm_model_prefix
${
bpeprefix
}
\
--vocab_path
=
"data/vocab.txt"
\
--manifest_path
=
"data/manifest.t
iny
.raw"
\
--output_path
=
"data/manifest.t
iny
"
--manifest_path
=
"data/manifest.t
rain
.raw"
\
--output_path
=
"data/manifest.t
rain
"
if
[
$?
-ne
0
]
;
then
...
...
examples/librispeech/s1/local/export.sh
浏览文件 @
c4df6bac
...
...
@@ -5,11 +5,21 @@ if [ $# != 3 ];then
exit
-1
fi
ngpu
=
$(
echo
$CUDA_VISIBLE_DEVICES
|
awk
-F
","
'{print NF}'
)
echo
"using
$ngpu
gpus..."
config_path
=
$1
ckpt_path_prefix
=
$2
jit_model_export_path
=
$3
device
=
gpu
if
[
ngpu
!=
0
]
;
then
device
=
cpu
fi
python3
-u
${
BIN_DIR
}
/export.py
\
--device
${
device
}
\
--nproc
${
ngpu
}
\
--config
${
config_path
}
\
--checkpoint_path
${
ckpt_path_prefix
}
\
--export_path
${
jit_model_export_path
}
...
...
examples/librispeech/s1/local/train.sh
浏览文件 @
c4df6bac
...
...
@@ -10,6 +10,7 @@ echo "using $ngpu gpus..."
config_path
=
$1
ckpt_name
=
$2
device
=
gpu
if
[
ngpu
!=
0
]
;
then
device
=
cpu
...
...
examples/librispeech/s1/run.sh
100644 → 100755
浏览文件 @
c4df6bac
#!/bin/bash
set
-e
source
path.sh
source
${
MAIN_ROOT
}
/utils/parse_options.sh
# prepare data
bash ./local/data.sh
stage
=
0
stop_stage
=
100
ckpt
=
conformer
avg_num
=
30
avg_ckpt
=
avg_
${
avg_num
}
source
${
MAIN_ROOT
}
/utils/parse_options.sh
||
exit
1
;
if
[
${
stage
}
-le
0
]
&&
[
${
stop_stage
}
-ge
0
]
;
then
# prepare data
bash ./local/data.sh
||
exit
-1
fi
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES
=
0 ./local/train.sh conf/conformer.yaml
test
if
[
${
stage
}
-le
1
]
&&
[
${
stop_stage
}
-ge
1
]
;
then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES
=
4,5,6,7 ./local/train.sh conf/conformer.yaml
${
ckpt
}
fi
# test ckpt 1
CUDA_VISIBLE_DEVICES
=
0 ./local/test.sh conf/conformer.yaml exp/test/checkpoints/1
if
[
${
stage
}
-le
2
]
&&
[
${
stop_stage
}
-ge
2
]
;
then
# avg n best model
./local/avg.sh exp/
${
ckpt
}
/checkpoints
${
avg_num
}
fi
# avg 1 best model
./local/avg.sh exp/test/checkpoints 1
if
[
${
stage
}
-le
3
]
&&
[
${
stop_stage
}
-ge
3
]
;
then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES
=
7 ./local/test.sh conf/conformer.yaml exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
||
exit
-1
fi
# export ckpt 1
./local/export.sh conf/conformer.yaml exp/test/checkpoints/1 exp/test/checkpoints/1.jit.model
\ No newline at end of file
if
[
${
stage
}
-le
4
]
&&
[
${
stop_stage
}
-ge
4
]
;
then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES
=
./local/export.sh conf/conformer.yaml exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
.jit
fi
examples/tiny/s1/run.sh
浏览文件 @
c4df6bac
#!/bin/bash
set
-e
source
path.sh
stage
=
0
stop_stage
=
100
ckpt
=
conformer
avg_num
=
1
avg_ckpt
=
avg_
${
avg_num
}
source
${
MAIN_ROOT
}
/utils/parse_options.sh
||
exit
1
;
# prepare data
bash ./local/data.sh
||
exit
-1
if
[
${
stage
}
-le
0
]
&&
[
${
stop_stage
}
-ge
0
]
;
then
# prepare data
bash ./local/data.sh
||
exit
-1
fi
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES
=
0 ./local/train.sh conf/conformer.yaml
test
||
exit
-1
if
[
${
stage
}
-le
1
]
&&
[
${
stop_stage
}
-ge
1
]
;
then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES
=
0 ./local/train.sh conf/conformer.yaml
${
ckpt
}
fi
# avg 1 best model
./local/avg.sh exp/test/checkpoints 1
if
[
${
stage
}
-le
2
]
&&
[
${
stop_stage
}
-ge
2
]
;
then
# avg n best model
./local/avg.sh exp/
${
ckpt
}
/checkpoints
${
avg_num
}
fi
# test ckpt 1
CUDA_VISIBLE_DEVICES
=
0 ./local/test.sh conf/conformer.yaml exp/test/checkpoints/avg_1
||
exit
-1
if
[
${
stage
}
-le
3
]
&&
[
${
stop_stage
}
-ge
3
]
;
then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES
=
0 ./local/test.sh conf/conformer.yaml exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
||
exit
-1
fi
# export ckpt 1
CUDA_VISIBLE_DEVICES
=
./local/export.sh conf/conformer.yaml exp/test/checkpoints/avg_1 exp/test/checkpoints/avg_1.jit.model
if
[
${
stage
}
-le
4
]
&&
[
${
stop_stage
}
-ge
4
]
;
then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES
=
./local/export.sh conf/conformer.yaml exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
.jit
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录