提交 c4df6bac 编写于 作者: H Hui Zhang

add librispeech scripts

上级 497cf4e2
......@@ -79,7 +79,7 @@ model:
training:
n_epoch: 20
n_epoch: 120
accum_grad: 1
global_grad_clip: 5.0
optim: adam
......@@ -90,11 +90,11 @@ training:
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
log_interval: 100
decoding:
batch_size: 64
batch_size: 128
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
......
......@@ -8,7 +8,7 @@ data:
spm_model_prefix: 'data/bpe_unigram_200'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 4
batch_size: 64
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
......@@ -72,18 +72,18 @@ model:
training:
n_epoch: 20
n_epoch: 120
accum_grad: 1
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
lr: 0.001
weight_decay: 1e-06
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
log_interval: 100
decoding:
......
......@@ -5,14 +5,14 @@ data:
test_manifest: data/manifest.tiny
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_200'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 4
min_input_len: 0.5
max_input_len: 20.0
min_output_len: 0.0
max_output_len: 400.0
batch_size: 64
min_input_len: 0.5 # seconds
max_input_len: 20.0 # seconds
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
raw_wav: True # use raw_wav or kaldi feature
......@@ -49,7 +49,7 @@ model:
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
normalize_before: True
use_cnn_module: True
cnn_module_kernel: 15
activation_type: 'swish'
......@@ -75,18 +75,18 @@ model:
training:
n_epoch: 20
accum_grad: 4
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
log_interval: 100
decoding:
......
......@@ -8,7 +8,7 @@ data:
spm_model_prefix: 'data/bpe_unigram_200'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 4
batch_size: 64
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
......@@ -70,18 +70,18 @@ model:
training:
n_epoch: 20
accum_grad: 1
n_epoch: 120
accum_grad: 2
global_grad_clip: 5.0
optim: adam
optim_conf:
lr: 0.002
lr: 0.004
weight_decay: 1e-06
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
log_interval: 100
decoding:
......
#! /usr/bin/env bash
if [ $# != 2 ];then
if [ $# != 2 ]; then
echo "usage: ${0} ckpt_dir avg_num"
exit -1
fi
......
......@@ -4,7 +4,7 @@ stage=-1
stop_stage=100
# bpemode (unigram or bpe)
nbpe=200
nbpe=5000
bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
......@@ -20,14 +20,16 @@ if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
python3 ${TARGET_DIR}/librispeech/librispeech.py \
--manifest_prefix="data/manifest" \
--target_dir="${TARGET_DIR}/librispeech" \
--full_download="False"
--full_download="True"
if [ $? -ne 0 ]; then
echo "Prepare LibriSpeech failed. Terminated."
exit 1
fi
head -n 64 data/manifest.dev-clean > data/manifest.tiny.raw
for set in train-clean-100 train-clean-360 train-other-500; do
cat data/manifest.${set} >> data/manifest.train.raw
done
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
......@@ -38,7 +40,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
--spm_mode ${bpemode} \
--spm_model_prefix ${bpeprefix} \
--vocab_path="data/vocab.txt" \
--manifest_paths="data/manifest.tiny.raw"
--manifest_paths="data/manifest.train.raw"
if [ $? -ne 0 ]; then
echo "Build vocabulary failed. Terminated."
......@@ -49,16 +51,17 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# compute mean and stddev for normalizer
num_workers=$(nproc)
python3 ${MAIN_ROOT}/utils/compute_mean_std.py \
--manifest_path="data/manifest.tiny.raw" \
--num_samples=64 \
--manifest_path="data/manifest.train.raw" \
--num_samples=-1 \
--specgram_type="fbank" \
--feat_dim=80 \
--delta_delta=false \
--sample_rate=16000 \
--stride_ms=10.0 \
--window_ms=25.0 \
--num_workers=2 \
--num_workers=${num_workers} \
--output_path="data/mean_std.json"
if [ $? -ne 0 ]; then
......@@ -76,8 +79,8 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
--unit_type "spm" \
--spm_model_prefix ${bpeprefix} \
--vocab_path="data/vocab.txt" \
--manifest_path="data/manifest.tiny.raw" \
--output_path="data/manifest.tiny"
--manifest_path="data/manifest.train.raw" \
--output_path="data/manifest.train"
if [ $? -ne 0 ]; then
......
......@@ -5,11 +5,21 @@ if [ $# != 3 ];then
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ngpu != 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
--export_path ${jit_model_export_path}
......
......@@ -10,6 +10,7 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ngpu != 0 ];then
device=cpu
......
#!/bin/bash
set -e
source path.sh
source ${MAIN_ROOT}/utils/parse_options.sh
# prepare data
bash ./local/data.sh
stage=0
stop_stage=100
ckpt=conformer
avg_num=30
avg_ckpt=avg_${avg_num}
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=0 ./local/train.sh conf/conformer.yaml test
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=4,5,6,7 ./local/train.sh conf/conformer.yaml ${ckpt}
fi
# test ckpt 1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh conf/conformer.yaml exp/test/checkpoints/1
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
./local/avg.sh exp/${ckpt}/checkpoints ${avg_num}
fi
# avg 1 best model
./local/avg.sh exp/test/checkpoints 1
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=7 ./local/test.sh conf/conformer.yaml exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
# export ckpt 1
./local/export.sh conf/conformer.yaml exp/test/checkpoints/1 exp/test/checkpoints/1.jit.model
\ No newline at end of file
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh conf/conformer.yaml exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
#!/bin/bash
set -e
source path.sh
stage=0
stop_stage=100
ckpt=conformer
avg_num=1
avg_ckpt=avg_${avg_num}
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
# prepare data
bash ./local/data.sh || exit -1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=0 ./local/train.sh conf/conformer.yaml test || exit -1
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=0 ./local/train.sh conf/conformer.yaml ${ckpt}
fi
# avg 1 best model
./local/avg.sh exp/test/checkpoints 1
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
./local/avg.sh exp/${ckpt}/checkpoints ${avg_num}
fi
# test ckpt 1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh conf/conformer.yaml exp/test/checkpoints/avg_1 || exit -1
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh conf/conformer.yaml exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
# export ckpt 1
CUDA_VISIBLE_DEVICES= ./local/export.sh conf/conformer.yaml exp/test/checkpoints/avg_1 exp/test/checkpoints/avg_1.jit.model
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh conf/conformer.yaml exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册