diff --git a/examples/ljspeech/tts3/local/synthesize.sh b/examples/ljspeech/tts3/local/synthesize.sh index f150d158f6832cecfd0eff5028d5dd716f3d52f8..6dc34274c5862f928584b0e8fc513f488f5760d5 100755 --- a/examples/ljspeech/tts3/local/synthesize.sh +++ b/examples/ljspeech/tts3/local/synthesize.sh @@ -4,17 +4,42 @@ config_path=$1 train_output_path=$2 ckpt_name=$3 -FLAGS_allocator_strategy=naive_best_fit \ -FLAGS_fraction_of_gpu_memory_to_use=0.01 \ -python3 ${BIN_DIR}/../synthesize.py \ - --am=fastspeech2_ljspeech \ - --am_config=${config_path} \ - --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ - --am_stat=dump/train/speech_stats.npy \ - --voc=pwgan_ljspeech \ - --voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \ - --voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \ - --voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \ - --test_metadata=dump/test/norm/metadata.jsonl \ - --output_dir=${train_output_path}/test \ - --phones_dict=dump/phone_id_map.txt +stage=0 +stop_stage=0 + +# pwgan +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + FLAGS_allocator_strategy=naive_best_fit \ + FLAGS_fraction_of_gpu_memory_to_use=0.01 \ + python3 ${BIN_DIR}/../synthesize.py \ + --am=fastspeech2_ljspeech \ + --am_config=${config_path} \ + --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ + --am_stat=dump/train/speech_stats.npy \ + --voc=pwgan_ljspeech \ + --voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \ + --voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \ + --voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \ + --test_metadata=dump/test/norm/metadata.jsonl \ + --output_dir=${train_output_path}/test \ + --phones_dict=dump/phone_id_map.txt +fi + +# hifigan +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + FLAGS_allocator_strategy=naive_best_fit \ + FLAGS_fraction_of_gpu_memory_to_use=0.01 \ + python3 ${BIN_DIR}/../synthesize.py \ + --am=fastspeech2_ljspeech \ + --am_config=${config_path} \ + --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ + --am_stat=dump/train/speech_stats.npy \ + --voc=hifigan_ljspeech \ + --voc_config=hifigan_ljspeech_ckpt_0.2.0/default.yaml \ + --voc_ckpt=hifigan_ljspeech_ckpt_0.2.0/snapshot_iter_2500000.pdz \ + --voc_stat=hifigan_ljspeech_ckpt_0.2.0/feats_stats.npy \ + --test_metadata=dump/test/norm/metadata.jsonl \ + --output_dir=${train_output_path}/test \ + --phones_dict=dump/phone_id_map.txt +fi + diff --git a/examples/ljspeech/tts3/local/synthesize_e2e.sh b/examples/ljspeech/tts3/local/synthesize_e2e.sh index 0b0cb5741938d0455ec6244d70c083a97c89be0d..36865f7f169d12f9767819f1a8912e7349065df1 100755 --- a/examples/ljspeech/tts3/local/synthesize_e2e.sh +++ b/examples/ljspeech/tts3/local/synthesize_e2e.sh @@ -4,19 +4,45 @@ config_path=$1 train_output_path=$2 ckpt_name=$3 -FLAGS_allocator_strategy=naive_best_fit \ -FLAGS_fraction_of_gpu_memory_to_use=0.01 \ -python3 ${BIN_DIR}/../synthesize_e2e.py \ - --am=fastspeech2_ljspeech \ - --am_config=${config_path} \ - --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ - --am_stat=dump/train/speech_stats.npy \ - --voc=pwgan_ljspeech \ - --voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \ - --voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \ - --voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \ - --lang=en \ - --text=${BIN_DIR}/../sentences_en.txt \ - --output_dir=${train_output_path}/test_e2e \ - --inference_dir=${train_output_path}/inference \ - --phones_dict=dump/phone_id_map.txt \ No newline at end of file +stage=0 +stop_stage=0 + +# pwgan +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + FLAGS_allocator_strategy=naive_best_fit \ + FLAGS_fraction_of_gpu_memory_to_use=0.01 \ + python3 ${BIN_DIR}/../synthesize_e2e.py \ + --am=fastspeech2_ljspeech \ + --am_config=${config_path} \ + --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ + --am_stat=dump/train/speech_stats.npy \ + --voc=pwgan_ljspeech \ + --voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \ + --voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \ + --voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \ + --lang=en \ + --text=${BIN_DIR}/../sentences_en.txt \ + --output_dir=${train_output_path}/test_e2e \ + --inference_dir=${train_output_path}/inference \ + --phones_dict=dump/phone_id_map.txt +fi + +# hifigan +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + FLAGS_allocator_strategy=naive_best_fit \ + FLAGS_fraction_of_gpu_memory_to_use=0.01 \ + python3 ${BIN_DIR}/../synthesize_e2e.py \ + --am=fastspeech2_ljspeech \ + --am_config=${config_path} \ + --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ + --am_stat=dump/train/speech_stats.npy \ + --voc=hifigan_ljspeech \ + --voc_config=hifigan_ljspeech_ckpt_0.2.0/default.yaml \ + --voc_ckpt=hifigan_ljspeech_ckpt_0.2.0/snapshot_iter_2500000.pdz \ + --voc_stat=hifigan_ljspeech_ckpt_0.2.0/feats_stats.npy \ + --lang=en \ + --text=${BIN_DIR}/../sentences_en.txt \ + --output_dir=${train_output_path}/test_e2e \ + --inference_dir=${train_output_path}/inference \ + --phones_dict=dump/phone_id_map.txt +fi