Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
ba0dc3c1
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba0dc3c1
编写于
12月 01, 2021
作者:
K
KP
提交者:
GitHub
12月 01, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2 from Jackwaterveg/cli_infer
LGTM
上级
44e9b032
90d648a6
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
166 addition
and
69 deletion
+166
-69
paddlespeech/cli/asr/infer.py
paddlespeech/cli/asr/infer.py
+166
-69
未找到文件。
paddlespeech/cli/asr/infer.py
浏览文件 @
ba0dc3c1
...
@@ -18,17 +18,17 @@ from typing import List
...
@@ -18,17 +18,17 @@ from typing import List
from
typing
import
Optional
from
typing
import
Optional
from
typing
import
Union
from
typing
import
Union
import
librosa
import
paddle
import
paddle
import
soundfile
import
soundfile
from
yacs.config
import
CfgNode
from
..executor
import
BaseExecutor
from
..executor
import
BaseExecutor
from
..utils
import
cli_register
from
..utils
import
cli_register
from
..utils
import
download_and_decompress
from
..utils
import
download_and_decompress
from
..utils
import
logger
from
..utils
import
logger
from
..utils
import
MODEL_HOME
from
..utils
import
MODEL_HOME
from
paddlespeech.s2t.exps.u2.config
import
get_cfg_defaults
from
paddlespeech.s2t.frontend.featurizer.text_featurizer
import
TextFeaturizer
from
paddlespeech.s2t.frontend.featurizer.text_featurizer
import
TextFeaturizer
from
paddlespeech.s2t.io.collator
import
SpeechCollator
from
paddlespeech.s2t.transform.transformation
import
Transformation
from
paddlespeech.s2t.transform.transformation
import
Transformation
from
paddlespeech.s2t.utils.dynamic_import
import
dynamic_import
from
paddlespeech.s2t.utils.dynamic_import
import
dynamic_import
from
paddlespeech.s2t.utils.utility
import
UpdateConfig
from
paddlespeech.s2t.utils.utility
import
UpdateConfig
...
@@ -36,7 +36,7 @@ from paddlespeech.s2t.utils.utility import UpdateConfig
...
@@ -36,7 +36,7 @@ from paddlespeech.s2t.utils.utility import UpdateConfig
__all__
=
[
'ASRExecutor'
]
__all__
=
[
'ASRExecutor'
]
pretrained_models
=
{
pretrained_models
=
{
"wenetspeech_zh"
:
{
"wenetspeech_zh
_16k
"
:
{
'url'
:
'url'
:
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz'
,
'https://paddlespeech.bj.bcebos.com/s2t/wenetspeech/conformer.model.tar.gz'
,
'md5'
:
'md5'
:
...
@@ -73,7 +73,15 @@ class ASRExecutor(BaseExecutor):
...
@@ -73,7 +73,15 @@ class ASRExecutor(BaseExecutor):
default
=
'wenetspeech'
,
default
=
'wenetspeech'
,
help
=
'Choose model type of asr task.'
)
help
=
'Choose model type of asr task.'
)
self
.
parser
.
add_argument
(
self
.
parser
.
add_argument
(
'--lang'
,
type
=
str
,
default
=
'zh'
,
help
=
'Choose model language.'
)
'--lang'
,
type
=
str
,
default
=
'zh'
,
help
=
'Choose model language. zh or en'
)
self
.
parser
.
add_argument
(
"--model_sample_rate"
,
type
=
int
,
default
=
16000
,
help
=
'Choose the audio sample rate of the model. 8000 or 16000'
)
self
.
parser
.
add_argument
(
self
.
parser
.
add_argument
(
'--config'
,
'--config'
,
type
=
str
,
type
=
str
,
...
@@ -109,13 +117,16 @@ class ASRExecutor(BaseExecutor):
...
@@ -109,13 +117,16 @@ class ASRExecutor(BaseExecutor):
def
_init_from_path
(
self
,
def
_init_from_path
(
self
,
model_type
:
str
=
'wenetspeech'
,
model_type
:
str
=
'wenetspeech'
,
lang
:
str
=
'zh'
,
lang
:
str
=
'zh'
,
model_sample_rate
:
int
=
16000
,
cfg_path
:
Optional
[
os
.
PathLike
]
=
None
,
cfg_path
:
Optional
[
os
.
PathLike
]
=
None
,
ckpt_path
:
Optional
[
os
.
PathLike
]
=
None
):
ckpt_path
:
Optional
[
os
.
PathLike
]
=
None
,
device
:
str
=
'cpu'
):
"""
"""
Init model and other resources from a specific path.
Init model and other resources from a specific path.
"""
"""
if
cfg_path
is
None
or
ckpt_path
is
None
:
if
cfg_path
is
None
or
ckpt_path
is
None
:
tag
=
model_type
+
'_'
+
lang
model_sample_rate_str
=
'16k'
if
model_sample_rate
==
16000
else
'8k'
tag
=
model_type
+
'_'
+
lang
+
'_'
+
model_sample_rate_str
res_path
=
self
.
_get_pretrained_path
(
tag
)
# wenetspeech_zh
res_path
=
self
.
_get_pretrained_path
(
tag
)
# wenetspeech_zh
self
.
cfg_path
=
os
.
path
.
join
(
res_path
,
self
.
cfg_path
=
os
.
path
.
join
(
res_path
,
pretrained_models
[
tag
][
'cfg_path'
])
pretrained_models
[
tag
][
'cfg_path'
])
...
@@ -130,40 +141,44 @@ class ASRExecutor(BaseExecutor):
...
@@ -130,40 +141,44 @@ class ASRExecutor(BaseExecutor):
res_path
=
os
.
path
.
dirname
(
res_path
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
self
.
cfg_path
)))
os
.
path
.
dirname
(
os
.
path
.
abspath
(
self
.
cfg_path
)))
# Enter the path of model root
os
.
chdir
(
res_path
)
#Init body.
#Init body.
parser_args
=
self
.
parser_args
paddle
.
set_device
(
device
)
paddle
.
set_device
(
parser_args
.
device
)
self
.
config
=
CfgNode
(
new_allowed
=
True
)
self
.
config
=
get_cfg_defaults
()
self
.
config
.
merge_from_file
(
self
.
cfg_path
)
self
.
config
.
merge_from_file
(
self
.
cfg_path
)
self
.
config
.
decoding
.
decoding_method
=
"attention_rescoring"
self
.
config
.
decoding
.
decoding_method
=
"attention_rescoring"
#self.config.freeze()
model_conf
=
self
.
config
.
model
model_conf
=
self
.
config
.
model
logger
.
info
(
model_conf
)
logger
.
info
(
model_conf
)
with
UpdateConfig
(
model_conf
):
with
UpdateConfig
(
model_conf
):
if
parser_args
.
model
==
"ds2_online"
or
parser_args
.
model
==
"ds2_offline"
:
if
model_type
==
"ds2_online"
or
model_type
==
"ds2_offline"
:
from
paddlespeech.s2t.io.collator
import
SpeechCollator
self
.
config
.
collator
.
vocab_filepath
=
os
.
path
.
join
(
self
.
config
.
collator
.
vocab_filepath
=
os
.
path
.
join
(
res_path
,
self
.
config
.
collator
.
vocab_filepath
)
res_path
,
self
.
config
.
collator
.
vocab_filepath
)
self
.
config
.
collator
.
vocab
_filepath
=
os
.
path
.
join
(
self
.
config
.
collator
.
mean_std
_filepath
=
os
.
path
.
join
(
res_path
,
self
.
config
.
collator
.
cmvn_path
)
res_path
,
self
.
config
.
collator
.
cmvn_path
)
self
.
collate_fn_test
=
SpeechCollator
.
from_config
(
self
.
config
)
self
.
collate_fn_test
=
SpeechCollator
.
from_config
(
self
.
config
)
model_conf
.
feat_size
=
self
.
collate_fn_test
.
feature_size
text_feature
=
TextFeaturizer
(
model_conf
.
dict_size
=
self
.
text_feature
.
vocab_size
unit_type
=
self
.
config
.
collator
.
unit_type
,
elif
parser_args
.
model
==
"conformer"
or
parser_args
.
model
==
"transformer"
or
parser_args
.
model
==
"wenetspeech"
:
vocab_filepath
=
self
.
config
.
collator
.
vocab_filepath
,
spm_model_prefix
=
self
.
config
.
collator
.
spm_model_prefix
)
model_conf
.
input_dim
=
self
.
collate_fn_test
.
feature_size
model_conf
.
output_dim
=
text_feature
.
vocab_size
elif
model_type
==
"conformer"
or
model_type
==
"transformer"
or
model_type
==
"wenetspeech"
:
self
.
config
.
collator
.
vocab_filepath
=
os
.
path
.
join
(
self
.
config
.
collator
.
vocab_filepath
=
os
.
path
.
join
(
res_path
,
self
.
config
.
collator
.
vocab_filepath
)
res_path
,
self
.
config
.
collator
.
vocab_filepath
)
self
.
text_feature
=
TextFeaturizer
(
text_feature
=
TextFeaturizer
(
unit_type
=
self
.
config
.
collator
.
unit_type
,
unit_type
=
self
.
config
.
collator
.
unit_type
,
vocab_filepath
=
self
.
config
.
collator
.
vocab_filepath
,
vocab_filepath
=
self
.
config
.
collator
.
vocab_filepath
,
spm_model_prefix
=
self
.
config
.
collator
.
spm_model_prefix
)
spm_model_prefix
=
self
.
config
.
collator
.
spm_model_prefix
)
model_conf
.
input_dim
=
self
.
config
.
collator
.
feat_dim
model_conf
.
input_dim
=
self
.
config
.
collator
.
feat_dim
model_conf
.
output_dim
=
self
.
text_feature
.
vocab_size
model_conf
.
output_dim
=
text_feature
.
vocab_size
else
:
else
:
raise
Exception
(
"wrong type"
)
raise
Exception
(
"wrong type"
)
model_class
=
dynamic_import
(
parser_args
.
model
,
model_alias
)
self
.
config
.
freeze
()
# Enter the path of model root
os
.
chdir
(
res_path
)
model_class
=
dynamic_import
(
model_type
,
model_alias
)
model
=
model_class
.
from_config
(
model_conf
)
model
=
model_class
.
from_config
(
model_conf
)
self
.
model
=
model
self
.
model
=
model
self
.
model
.
eval
()
self
.
model
.
eval
()
...
@@ -173,75 +188,94 @@ class ASRExecutor(BaseExecutor):
...
@@ -173,75 +188,94 @@ class ASRExecutor(BaseExecutor):
model_dict
=
paddle
.
load
(
params_path
)
model_dict
=
paddle
.
load
(
params_path
)
self
.
model
.
set_state_dict
(
model_dict
)
self
.
model
.
set_state_dict
(
model_dict
)
def
preprocess
(
self
,
input
:
Union
[
str
,
os
.
PathLike
]):
def
preprocess
(
self
,
model_type
:
str
,
input
:
Union
[
str
,
os
.
PathLike
]):
"""
"""
Input preprocess and return paddle.Tensor stored in self.input.
Input preprocess and return paddle.Tensor stored in self.input.
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
"""
"""
parser_args
=
self
.
parser_args
config
=
self
.
config
audio_file
=
input
audio_file
=
input
logger
.
info
(
"
audio_file
"
+
audio_file
)
logger
.
info
(
"
Preprocess audio_file:
"
+
audio_file
)
self
.
sr
=
config
.
collator
.
target_sample_rate
config_target_sample_rate
=
self
.
config
.
collator
.
target_sample_rate
# Get the object for feature extraction
# Get the object for feature extraction
if
parser_args
.
model
==
"ds2_online"
or
parser_args
.
model
==
"ds2_offline"
:
if
model_type
==
"ds2_online"
or
model_type
==
"ds2_offline"
:
audio
,
_
=
collate_fn_test
.
process_utterance
(
audio
,
_
=
self
.
collate_fn_test
.
process_utterance
(
audio_file
=
audio_file
,
transcript
=
" "
)
audio_file
=
audio_file
,
transcript
=
" "
)
audio_len
=
audio
.
shape
[
0
]
audio_len
=
audio
.
shape
[
0
]
audio
=
paddle
.
to_tensor
(
audio
,
dtype
=
'float32'
)
audio
=
paddle
.
to_tensor
(
audio
,
dtype
=
'float32'
)
self
.
audio_len
=
paddle
.
to_tensor
(
audio_len
)
audio_len
=
paddle
.
to_tensor
(
audio_len
)
self
.
audio
=
paddle
.
unsqueeze
(
audio
,
axis
=
0
)
audio
=
paddle
.
unsqueeze
(
audio
,
axis
=
0
)
self
.
vocab_list
=
collate_fn_test
.
vocab_list
vocab_list
=
collate_fn_test
.
vocab_list
logger
.
info
(
f
"audio feat shape:
{
self
.
audio
.
shape
}
"
)
self
.
_inputs
[
"audio"
]
=
audio
self
.
_inputs
[
"audio_len"
]
=
audio_len
elif
parser_args
.
model
==
"conformer"
or
parser_args
.
model
==
"transformer"
or
parser_args
.
model
==
"wenetspeech"
:
logger
.
info
(
f
"audio feat shape:
{
audio
.
shape
}
"
)
elif
model_type
==
"conformer"
or
model_type
==
"transformer"
or
model_type
==
"wenetspeech"
:
logger
.
info
(
"get the preprocess conf"
)
logger
.
info
(
"get the preprocess conf"
)
preprocess_conf
=
os
.
path
.
join
(
preprocess_conf
=
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
self
.
cfg_path
)),
os
.
path
.
dirname
(
os
.
path
.
abspath
(
self
.
cfg_path
)),
"preprocess.yaml"
)
"preprocess.yaml"
)
cmvn_path
:
data
/
mean_std
.
json
logger
.
info
(
preprocess_conf
)
logger
.
info
(
preprocess_conf
)
preprocess_args
=
{
"train"
:
False
}
preprocess_args
=
{
"train"
:
False
}
preprocessing
=
Transformation
(
preprocess_conf
)
preprocessing
=
Transformation
(
preprocess_conf
)
logger
.
info
(
"read the audio file"
)
audio
,
sample_rate
=
soundfile
.
read
(
audio
,
sample_rate
=
soundfile
.
read
(
audio_file
,
dtype
=
"int16"
,
always_2d
=
True
)
audio_file
,
dtype
=
"int16"
,
always_2d
=
True
)
if
sample_rate
!=
self
.
sr
:
if
self
.
change_format
:
if
audio
.
shape
[
1
]
>=
2
:
audio
=
audio
.
mean
(
axis
=
1
)
else
:
audio
=
audio
[:,
0
]
audio
=
audio
.
astype
(
"float32"
)
audio
=
librosa
.
resample
(
audio
,
sample_rate
,
self
.
target_sample_rate
)
sample_rate
=
self
.
target_sample_rate
audio
=
audio
.
astype
(
"int16"
)
else
:
audio
=
audio
[:,
0
]
if
sample_rate
!=
config_target_sample_rate
:
logger
.
error
(
logger
.
error
(
f
"sample rate error:
{
sample_rate
}
, need
{
self
.
sr
}
"
)
f
"sample rate error:
{
sample_rate
}
, need
{
self
.
sr
}
"
)
sys
.
exit
(
-
1
)
sys
.
exit
(
-
1
)
audio
=
audio
[:,
0
]
logger
.
info
(
f
"audio shape:
{
audio
.
shape
}
"
)
logger
.
info
(
f
"audio shape:
{
audio
.
shape
}
"
)
# fbank
# fbank
audio
=
preprocessing
(
audio
,
**
preprocess_args
)
audio
=
preprocessing
(
audio
,
**
preprocess_args
)
self
.
audio_len
=
paddle
.
to_tensor
(
audio
.
shape
[
0
])
audio_len
=
paddle
.
to_tensor
(
audio
.
shape
[
0
])
self
.
audio
=
paddle
.
to_tensor
(
audio
=
paddle
.
to_tensor
(
audio
,
dtype
=
'float32'
).
unsqueeze
(
axis
=
0
)
audio
,
dtype
=
'float32'
).
unsqueeze
(
axis
=
0
)
text_feature
=
TextFeaturizer
(
logger
.
info
(
f
"audio feat shape:
{
self
.
audio
.
shape
}
"
)
unit_type
=
self
.
config
.
collator
.
unit_type
,
vocab_filepath
=
self
.
config
.
collator
.
vocab_filepath
,
spm_model_prefix
=
self
.
config
.
collator
.
spm_model_prefix
)
self
.
_inputs
[
"audio"
]
=
audio
self
.
_inputs
[
"audio_len"
]
=
audio_len
logger
.
info
(
f
"audio feat shape:
{
audio
.
shape
}
"
)
else
:
else
:
raise
Exception
(
"wrong type"
)
raise
Exception
(
"wrong type"
)
@
paddle
.
no_grad
()
@
paddle
.
no_grad
()
def
infer
(
self
):
def
infer
(
self
,
model_type
:
str
):
"""
"""
Model inference and result stored in self.output.
Model inference and result stored in self.output.
"""
"""
text_feature
=
TextFeaturizer
(
unit_type
=
self
.
config
.
collator
.
unit_type
,
vocab_filepath
=
self
.
config
.
collator
.
vocab_filepath
,
spm_model_prefix
=
self
.
config
.
collator
.
spm_model_prefix
)
cfg
=
self
.
config
.
decoding
cfg
=
self
.
config
.
decoding
parser_args
=
self
.
parser_args
audio
=
self
.
_inputs
[
"audio"
]
audio
=
self
.
audio
audio_len
=
self
.
_inputs
[
"audio_len"
]
audio_len
=
self
.
audio_len
if
model_type
==
"ds2_online"
or
model_type
==
"ds2_offline"
:
if
parser_args
.
model
==
"ds2_online"
or
parser_args
.
model
==
"ds2_offline"
:
vocab_list
=
self
.
vocab_list
result_transcripts
=
self
.
model
.
decode
(
result_transcripts
=
self
.
model
.
decode
(
audio
,
audio
,
audio_len
,
audio_len
,
vocab_list
,
text_feature
.
vocab_list
,
decoding_method
=
cfg
.
decoding_method
,
decoding_method
=
cfg
.
decoding_method
,
lang_model_path
=
cfg
.
lang_model_path
,
lang_model_path
=
cfg
.
lang_model_path
,
beam_alpha
=
cfg
.
alpha
,
beam_alpha
=
cfg
.
alpha
,
...
@@ -250,14 +284,13 @@ class ASRExecutor(BaseExecutor):
...
@@ -250,14 +284,13 @@ class ASRExecutor(BaseExecutor):
cutoff_prob
=
cfg
.
cutoff_prob
,
cutoff_prob
=
cfg
.
cutoff_prob
,
cutoff_top_n
=
cfg
.
cutoff_top_n
,
cutoff_top_n
=
cfg
.
cutoff_top_n
,
num_processes
=
cfg
.
num_proc_bsearch
)
num_processes
=
cfg
.
num_proc_bsearch
)
self
.
result_transcripts
=
result_transcripts
[
0
]
self
.
_outputs
[
"result"
]
=
result_transcripts
[
0
]
elif
parser_args
.
model
==
"conformer"
or
parser_args
.
model
==
"transformer"
or
parser_args
.
model
==
"wenetspeech"
:
elif
model_type
==
"conformer"
or
model_type
==
"transformer"
or
model_type
==
"wenetspeech"
:
text_feature
=
self
.
text_feature
result_transcripts
=
self
.
model
.
decode
(
result_transcripts
=
self
.
model
.
decode
(
audio
,
audio
,
audio_len
,
audio_len
,
text_feature
=
self
.
text_feature
,
text_feature
=
text_feature
,
decoding_method
=
cfg
.
decoding_method
,
decoding_method
=
cfg
.
decoding_method
,
lang_model_path
=
cfg
.
lang_model_path
,
lang_model_path
=
cfg
.
lang_model_path
,
beam_alpha
=
cfg
.
alpha
,
beam_alpha
=
cfg
.
alpha
,
...
@@ -270,46 +303,110 @@ class ASRExecutor(BaseExecutor):
...
@@ -270,46 +303,110 @@ class ASRExecutor(BaseExecutor):
decoding_chunk_size
=
cfg
.
decoding_chunk_size
,
decoding_chunk_size
=
cfg
.
decoding_chunk_size
,
num_decoding_left_chunks
=
cfg
.
num_decoding_left_chunks
,
num_decoding_left_chunks
=
cfg
.
num_decoding_left_chunks
,
simulate_streaming
=
cfg
.
simulate_streaming
)
simulate_streaming
=
cfg
.
simulate_streaming
)
self
.
result_transcripts
=
result_transcripts
[
0
][
0
]
self
.
_outputs
[
"result"
]
=
result_transcripts
[
0
][
0
]
else
:
else
:
raise
Exception
(
"invalid model name"
)
raise
Exception
(
"invalid model name"
)
pass
def
postprocess
(
self
)
->
Union
[
str
,
os
.
PathLike
]:
def
postprocess
(
self
)
->
Union
[
str
,
os
.
PathLike
]:
"""
"""
Output postprocess and return human-readable results such as texts and audio files.
Output postprocess and return human-readable results such as texts and audio files.
"""
"""
return
self
.
result_transcripts
return
self
.
_outputs
[
"result"
]
def
_check
(
self
,
audio_file
:
str
,
model_sample_rate
:
int
):
self
.
target_sample_rate
=
model_sample_rate
if
self
.
target_sample_rate
!=
16000
and
self
.
target_sample_rate
!=
8000
:
logger
.
error
(
"please input --model_sample_rate 8000 or --model_sample_rate 16000"
)
raise
Exception
(
"invalid sample rate"
)
sys
.
exit
(
-
1
)
if
not
os
.
path
.
isfile
(
audio_file
):
logger
.
error
(
"Please input the right audio file path"
)
sys
.
exit
(
-
1
)
logger
.
info
(
"checking the audio file format......"
)
try
:
sig
,
sample_rate
=
soundfile
.
read
(
audio_file
,
dtype
=
"int16"
,
always_2d
=
True
)
except
Exception
as
e
:
logger
.
error
(
str
(
e
))
logger
.
error
(
"can not open the audio file, please check the audio file format is 'wav'.
\n
\
you can try to use sox to change the file format.
\n
\
For example:
\n
\
sample rate: 16k
\n
\
sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav
\n
\
sample rate: 8k
\n
\
sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav
\n
\
"
)
sys
.
exit
(
-
1
)
logger
.
info
(
"The sample rate is %d"
%
sample_rate
)
if
sample_rate
!=
self
.
target_sample_rate
:
logger
.
warning
(
"The sample rate of the input file is not {}.
\n
\
The program will resample the wav file to {}.
\n
\
If the result does not meet your expectations,
\n
\
Please input the 16k 16bit 1 channel wav file.
\
"
.
format
(
self
.
target_sample_rate
,
self
.
target_sample_rate
))
while
(
True
):
logger
.
info
(
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
)
content
=
input
(
"Input(Y/N):"
)
if
content
.
strip
()
==
"Y"
or
content
.
strip
(
)
==
"y"
or
content
.
strip
()
==
"yes"
or
content
.
strip
()
==
"Yes"
:
logger
.
info
(
"change the sampele rate, channel to 16k and 1 channel"
)
break
elif
content
.
strip
()
==
"N"
or
content
.
strip
(
)
==
"n"
or
content
.
strip
()
==
"no"
or
content
.
strip
()
==
"No"
:
logger
.
info
(
"Exit the program"
)
exit
(
1
)
else
:
logger
.
warning
(
"Not regular input, please input again"
)
self
.
change_format
=
True
else
:
logger
.
info
(
"The audio file format is right"
)
self
.
change_format
=
False
def
execute
(
self
,
argv
:
List
[
str
])
->
bool
:
def
execute
(
self
,
argv
:
List
[
str
])
->
bool
:
"""
"""
Command line entry.
Command line entry.
"""
"""
self
.
parser_args
=
self
.
parser
.
parse_args
(
argv
)
parser_args
=
self
.
parser
.
parse_args
(
argv
)
model
=
self
.
parser_args
.
model
model
=
parser_args
.
model
lang
=
self
.
parser_args
.
lang
lang
=
parser_args
.
lang
config
=
self
.
parser_args
.
config
model_sample_rate
=
parser_args
.
model_sample_rate
ckpt_path
=
self
.
parser_args
.
ckpt_path
config
=
parser_args
.
config
audio_file
=
os
.
path
.
abspath
(
self
.
parser_args
.
input
)
ckpt_path
=
parser_args
.
ckpt_path
device
=
self
.
parser_args
.
device
audio_file
=
parser_args
.
input
device
=
parser_args
.
device
try
:
try
:
res
=
self
(
model
,
lang
,
config
,
ckpt_path
,
audio_file
,
device
)
res
=
self
(
model
,
lang
,
model_sample_rate
,
config
,
ckpt_path
,
audio_file
,
device
)
logger
.
info
(
'ASR Result: {}'
.
format
(
res
))
logger
.
info
(
'ASR Result: {}'
.
format
(
res
))
return
True
return
True
except
Exception
as
e
:
except
Exception
as
e
:
print
(
e
)
print
(
e
)
return
False
return
False
def
__call__
(
self
,
model
,
lang
,
config
,
ckpt_path
,
audio_file
,
device
):
def
__call__
(
self
,
model
,
lang
,
model_sample_rate
,
config
,
ckpt_path
,
audio_file
,
device
):
"""
"""
Python API to call an executor.
Python API to call an executor.
"""
"""
self
.
_init_from_path
(
model
,
lang
,
config
,
ckpt_path
)
audio_file
=
os
.
path
.
abspath
(
audio_file
)
self
.
preprocess
(
audio_file
)
self
.
_check
(
audio_file
,
model_sample_rate
)
self
.
infer
()
self
.
_init_from_path
(
model
,
lang
,
model_sample_rate
,
config
,
ckpt_path
,
device
)
self
.
preprocess
(
model
,
audio_file
)
self
.
infer
(
model
)
res
=
self
.
postprocess
()
# Retrieve result of asr.
res
=
self
.
postprocess
()
# Retrieve result of asr.
return
res
return
res
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录