diff --git a/examples/baidu_en8k/run_infer_golden.sh b/examples/baidu_en8k/run_infer_golden.sh new file mode 100644 index 0000000000000000000000000000000000000000..68cf2fc9f862734dbb1122750869b95a5c67e893 --- /dev/null +++ b/examples/baidu_en8k/run_infer_golden.sh @@ -0,0 +1,55 @@ +#! /usr/bin/env bash + +cd ../.. > /dev/null + +# download language model +cd models/lm > /dev/null +sh download_lm_en.sh +if [ $? -ne 0 ]; then + exit 1 +fi +cd - > /dev/null + + +# download well-trained model +cd models/baidu_en8k > /dev/null +sh download_model.sh +if [ $? -ne 0 ]; then + exit 1 +fi +cd - > /dev/null + + +# infer +CUDA_VISIBLE_DEVICES=0 \ +python -u infer.py \ +--num_samples=10 \ +--trainer_count=1 \ +--beam_size=500 \ +--num_proc_bsearch=5 \ +--num_conv_layers=2 \ +--num_rnn_layers=3 \ +--rnn_layer_size=1024 \ +--alpha=1.4 \ +--beta=0.35 \ +--cutoff_prob=1.0 \ +--cutoff_top_n=40 \ +--use_gru=True \ +--use_gpu=True \ +--share_rnn_weights=False \ +--infer_manifest='data/librispeech/manifest.test-clean' \ +--mean_std_path='models/baidu_en8k/mean_std.npz' \ +--vocab_path='models/baidu_en8k/vocab.txt' \ +--model_path='models/baidu_en8k/params.tar.gz' \ +--lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ +--decoding_method='ctc_beam_search' \ +--error_rate_type='wer' \ +--specgram_type='linear' + +if [ $? -ne 0 ]; then + echo "Failed in inference!" + exit 1 +fi + + +exit 0 diff --git a/examples/baidu_en8k/run_test_golden.sh b/examples/baidu_en8k/run_test_golden.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c4ac0aeece2ee0b0d506d5ace7094372b05f1f7 --- /dev/null +++ b/examples/baidu_en8k/run_test_golden.sh @@ -0,0 +1,55 @@ +#! /usr/bin/env bash + +cd ../.. > /dev/null + +# download language model +cd models/lm > /dev/null +#sh download_lm_en.sh +#if [ $? -ne 0 ]; then +# exit 1 +#fi +cd - > /dev/null + + +# download well-trained model +cd models/baidu_en8k > /dev/null +#sh download_model.sh +#if [ $? -ne 0 ]; then +# exit 1 +#fi +cd - > /dev/null + + +# evaluate model +CUDA_VISIBLE_DEVICES=0,1,2,3 \ +python -u test.py \ +--batch_size=128 \ +--trainer_count=4 \ +--beam_size=500 \ +--num_proc_bsearch=8 \ +--num_proc_data=8 \ +--num_conv_layers=2 \ +--num_rnn_layers=3 \ +--rnn_layer_size=1024 \ +--alpha=1.4 \ +--beta=0.35 \ +--cutoff_prob=1.0 \ +--cutoff_top_n=40 \ +--use_gru=True \ +--use_gpu=True \ +--share_rnn_weights=False \ +--test_manifest='data/librispeech/manifest.test-clean' \ +--mean_std_path='models/baidu_en8k/mean_std.npz' \ +--vocab_path='models/baidu_en8k/vocab.txt' \ +--model_path='models/baidu_en8k/params.tar.gz' \ +--lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ +--decoding_method='ctc_beam_search' \ +--error_rate_type='wer' \ +--specgram_type='linear' + +if [ $? -ne 0 ]; then + echo "Failed in evaluation!" + exit 1 +fi + +exit 0