From 88668513b1986e39f458d149be564b21d85191e8 Mon Sep 17 00:00:00 2001 From: TianYuan Date: Fri, 29 Oct 2021 06:23:13 +0000 Subject: [PATCH] fix mv writer to visualdl in train --- README.md | 39 ++- docs/source/tts/install.md | 4 +- examples/tiny/s0/README.md | 1 - parakeet/data/batch.py | 4 +- parakeet/exps/fastspeech2/train.py | 4 +- .../gan_vocoder/multi_band_melgan/train.py | 4 +- .../gan_vocoder/parallelwave_gan/train.py | 4 +- parakeet/exps/speedyspeech/train.py | 4 +- parakeet/exps/tacotron2/ljspeech.py | 9 +- parakeet/exps/transformer_tts/train.py | 4 +- parakeet/models/melgan/melgan_updater.py | 231 ------------------ parakeet/training/extensions/visualizer.py | 6 +- 12 files changed, 38 insertions(+), 276 deletions(-) delete mode 100644 parakeet/models/melgan/melgan_updater.py diff --git a/README.md b/README.md index e0769720..468f42a6 100644 --- a/README.md +++ b/README.md @@ -9,34 +9,34 @@ English | [简体中文](README_ch.md)

-

- Quick Start - | Tutorials - | Models List - +

+ Quick Start + | Tutorials + | Models List +

- + ------------------------------------------------------------------------------------ ![License](https://img.shields.io/badge/license-Apache%202-red.svg) ![python version](https://img.shields.io/badge/python-3.7+-orange.svg) ![support os](https://img.shields.io/badge/os-linux-yellow.svg) -**PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for two critical tasks in Speech - **Automatic Speech Recognition (ASR)** and **Text-To-Speech Synthesis (TTS)**, with modules involving state-of-art and influential models. +**PaddleSpeech** is an open-source toolkit on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform for two critical tasks in Speech - **Automatic Speech Recognition (ASR)** and **Text-To-Speech Synthesis (TTS)**, with modules involving state-of-art and influential models. Via the easy-to-use, efficient, flexible and scalable implementation, our vision is to empower both industrial application and academic research, including training, inference & testing module, and deployment. Besides, this toolkit also features at: - **Fast and Light-weight**: we provide a high-speed and ultra-lightweight model that is convenient for industrial deployment. -- **Rule-based Chinese frontend**: our frontend contains Text Normalization (TN) and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context. -- **Varieties of Functions that Vitalize Research**: +- **Rule-based Chinese frontend**: our frontend contains Text Normalization (TN) and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context. +- **Varieties of Functions that Vitalize Research**: - *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of both ASR and TTS, and uses datasets like LibriSpeech, LJSpeech, AIShell, etc. See also [model lists](#models-list) for more details. - *Support of ASR streaming and non-streaming data*: This toolkit contains non-streaming/streaming models like [DeepSpeech2](http://proceedings.mlr.press/v48/amodei16.pdf), [Transformer](https://arxiv.org/abs/1706.03762), [Conformer](https://arxiv.org/abs/2005.08100) and [U2](https://arxiv.org/pdf/2012.05481.pdf). - -Let's install PaddleSpeech with only a few lines of code! + +Let's install PaddleSpeech with only a few lines of code! >Note: The official name is still deepspeech. 2021/10/26 @@ -44,7 +44,7 @@ Let's install PaddleSpeech with only a few lines of code! # 1. Install essential libraries and paddlepaddle first. # install prerequisites sudo apt-get install -y sox pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev libsndfile1 -# `pip install paddlepaddle-gpu` instead if you are using GPU. +# `pip install paddlepaddle-gpu` instead if you are using GPU. pip install paddlepaddle # 2.Then install PaddleSpeech. @@ -109,7 +109,7 @@ If you want to try more functions like training and tuning, please see [ASR gett PaddleSpeech ASR supports a lot of mainstream models, which are summarized as follow. For more information, please refer to [ASR Models](./docs/source/asr/released_model.md). @@ -125,7 +125,7 @@ The current hyperlinks redirect to [Previous Parakeet](https://github.com/Paddle - + @@ -199,7 +199,7 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model - @@ -292,11 +292,11 @@ PaddleSpeech TTS mainly contains three modules: *Text Frontend*, *Acoustic Model
Acoustic Model Aishell2 Conv + 5 LSTM layers with only forward direction 2 Conv + 5 LSTM layers with only forward direction Ds2 Online Aishell Model
Text Frontend + chinese-fronted
-## Tutorials +## Tutorials Normally, [Speech SoTA](https://paperswithcode.com/area/speech) gives you an overview of the hot academic topics in speech. If you want to focus on the two tasks in PaddleSpeech, you will find the following guidelines are helpful to grasp the core ideas. -The original ASR module is based on [Baidu's DeepSpeech](https://arxiv.org/abs/1412.5567) which is an independent product named [DeepSpeech](https://deepspeech.readthedocs.io). However, the toolkit aligns almost all the SoTA modules in the pipeline. Specifically, these modules are +The original ASR module is based on [Baidu's DeepSpeech](https://arxiv.org/abs/1412.5567) which is an independent product named [DeepSpeech](https://deepspeech.readthedocs.io). However, the toolkit aligns almost all the SoTA modules in the pipeline. Specifically, these modules are * [Data Prepration](docs/source/asr/data_preparation.md) * [Data Augmentation](docs/source/asr/augmentation.md) @@ -318,4 +318,3 @@ PaddleSpeech is provided under the [Apache-2.0 License](./LICENSE). ## Acknowledgement PaddleSpeech depends on a lot of open source repos. See [references](docs/source/asr/reference.md) for more information. - diff --git a/docs/source/tts/install.md b/docs/source/tts/install.md index c4249a18..b092acff 100644 --- a/docs/source/tts/install.md +++ b/docs/source/tts/install.md @@ -10,13 +10,13 @@ Example instruction to install paddlepaddle via pip is listed below. ### PaddlePaddle with GPU ```python -# PaddlePaddle for CUDA10.1 +# PaddlePaddle for CUDA10.1 python -m pip install paddlepaddle-gpu==2.1.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html # PaddlePaddle for CUDA10.2 python -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple # PaddlePaddle for CUDA11.0 python -m pip install paddlepaddle-gpu==2.1.2.post110 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html -# PaddlePaddle for CUDA11.2 +# PaddlePaddle for CUDA11.2 python -m pip install paddlepaddle-gpu==2.1.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html ``` ### PaddlePaddle with CPU diff --git a/examples/tiny/s0/README.md b/examples/tiny/s0/README.md index 7dc16dc3..11118dc4 100644 --- a/examples/tiny/s0/README.md +++ b/examples/tiny/s0/README.md @@ -37,4 +37,3 @@ ```bash bash local/export.sh ckpt_path saved_jit_model_path ``` - diff --git a/parakeet/data/batch.py b/parakeet/data/batch.py index 5e7ac399..515074d1 100644 --- a/parakeet/data/batch.py +++ b/parakeet/data/batch.py @@ -53,8 +53,8 @@ def batch_text_id(minibatch, pad_id=0, dtype=np.int64): peek_example = minibatch[0] assert len(peek_example.shape) == 1, "text example is an 1D tensor" - lengths = [example.shape[0] for example in - minibatch] # assume (channel, n_samples) or (n_samples, ) + lengths = [example.shape[0] for example in minibatch + ] # assume (channel, n_samples) or (n_samples, ) max_len = np.max(lengths) batch = [] diff --git a/parakeet/exps/fastspeech2/train.py b/parakeet/exps/fastspeech2/train.py index 59b1ea3a..47ad1b4d 100644 --- a/parakeet/exps/fastspeech2/train.py +++ b/parakeet/exps/fastspeech2/train.py @@ -25,7 +25,6 @@ from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler -from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn @@ -160,8 +159,7 @@ def train_sp(args, config): if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) - writer = LogWriter(str(output_dir)) - trainer.extend(VisualDL(writer), trigger=(1, "iteration")) + trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) # print(trainer.extensions) diff --git a/parakeet/exps/gan_vocoder/multi_band_melgan/train.py b/parakeet/exps/gan_vocoder/multi_band_melgan/train.py index bb9b0b8a..c03fb354 100644 --- a/parakeet/exps/gan_vocoder/multi_band_melgan/train.py +++ b/parakeet/exps/gan_vocoder/multi_band_melgan/train.py @@ -28,7 +28,6 @@ from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddle.optimizer import Adam from paddle.optimizer.lr import MultiStepDecay -from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.data_table import DataTable @@ -219,8 +218,7 @@ def train_sp(args, config): if dist.get_rank() == 0: trainer.extend( evaluator, trigger=(config.eval_interval_steps, 'iteration')) - writer = LogWriter(str(trainer.out)) - trainer.extend(VisualDL(writer), trigger=(1, 'iteration')) + trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration')) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(config.save_interval_steps, 'iteration')) diff --git a/parakeet/exps/gan_vocoder/parallelwave_gan/train.py b/parakeet/exps/gan_vocoder/parallelwave_gan/train.py index 7a16ca59..ad50b65c 100644 --- a/parakeet/exps/gan_vocoder/parallelwave_gan/train.py +++ b/parakeet/exps/gan_vocoder/parallelwave_gan/train.py @@ -28,7 +28,6 @@ from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddle.optimizer import Adam # No RAdaom from paddle.optimizer.lr import StepDecay -from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.data_table import DataTable @@ -193,8 +192,7 @@ def train_sp(args, config): if dist.get_rank() == 0: trainer.extend( evaluator, trigger=(config.eval_interval_steps, 'iteration')) - writer = LogWriter(str(trainer.out)) - trainer.extend(VisualDL(writer), trigger=(1, 'iteration')) + trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration')) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(config.save_interval_steps, 'iteration')) diff --git a/parakeet/exps/speedyspeech/train.py b/parakeet/exps/speedyspeech/train.py index ea9fe20d..6a4bf59e 100644 --- a/parakeet/exps/speedyspeech/train.py +++ b/parakeet/exps/speedyspeech/train.py @@ -25,7 +25,6 @@ from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler -from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.am_batch_fn import speedyspeech_batch_fn @@ -153,8 +152,7 @@ def train_sp(args, config): if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) - writer = LogWriter(str(output_dir)) - trainer.extend(VisualDL(writer), trigger=(1, "iteration")) + trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run() diff --git a/parakeet/exps/tacotron2/ljspeech.py b/parakeet/exps/tacotron2/ljspeech.py index 59c855eb..20dc29d3 100644 --- a/parakeet/exps/tacotron2/ljspeech.py +++ b/parakeet/exps/tacotron2/ljspeech.py @@ -67,16 +67,19 @@ class LJSpeechCollector(object): # Sort by text_len in descending order texts = [ - i for i, _ in sorted( + i + for i, _ in sorted( zip(texts, text_lens), key=lambda x: x[1], reverse=True) ] mels = [ - i for i, _ in sorted( + i + for i, _ in sorted( zip(mels, text_lens), key=lambda x: x[1], reverse=True) ] mel_lens = [ - i for i, _ in sorted( + i + for i, _ in sorted( zip(mel_lens, text_lens), key=lambda x: x[1], reverse=True) ] diff --git a/parakeet/exps/transformer_tts/train.py b/parakeet/exps/transformer_tts/train.py index fdaff347..bf066390 100644 --- a/parakeet/exps/transformer_tts/train.py +++ b/parakeet/exps/transformer_tts/train.py @@ -25,7 +25,6 @@ from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler -from visualdl import LogWriter from yacs.config import CfgNode from parakeet.datasets.am_batch_fn import transformer_single_spk_batch_fn @@ -148,8 +147,7 @@ def train_sp(args, config): if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) - writer = LogWriter(str(output_dir)) - trainer.extend(VisualDL(writer), trigger=(1, "iteration")) + trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) # print(trainer.extensions) diff --git a/parakeet/models/melgan/melgan_updater.py b/parakeet/models/melgan/melgan_updater.py deleted file mode 100644 index 7bd59881..00000000 --- a/parakeet/models/melgan/melgan_updater.py +++ /dev/null @@ -1,231 +0,0 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import logging -from typing import Dict - -import paddle -from paddle import distributed as dist -from paddle.io import DataLoader -from paddle.nn import Layer -from paddle.optimizer import Optimizer -from paddle.optimizer.lr import LRScheduler -from timer import timer - -from parakeet.training.extensions.evaluator import StandardEvaluator -from parakeet.training.reporter import report -from parakeet.training.updaters.standard_updater import StandardUpdater -from parakeet.training.updaters.standard_updater import UpdaterState -logging.basicConfig( - format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s', - datefmt='[%Y-%m-%d %H:%M:%S]') -logger = logging.getLogger(__name__) -logger.setLevel(logging.INFO) - - -class PWGUpdater(StandardUpdater): - def __init__(self, - models: Dict[str, Layer], - optimizers: Dict[str, Optimizer], - criterions: Dict[str, Layer], - schedulers: Dict[str, LRScheduler], - dataloader: DataLoader, - discriminator_train_start_steps: int, - lambda_adv: float, - output_dir=None): - self.models = models - self.generator: Layer = models['generator'] - self.discriminator: Layer = models['discriminator'] - - self.optimizers = optimizers - self.optimizer_g: Optimizer = optimizers['generator'] - self.optimizer_d: Optimizer = optimizers['discriminator'] - - self.criterions = criterions - self.criterion_stft = criterions['stft'] - self.criterion_mse = criterions['mse'] - - self.schedulers = schedulers - self.scheduler_g = schedulers['generator'] - self.scheduler_d = schedulers['discriminator'] - - self.dataloader = dataloader - - self.discriminator_train_start_steps = discriminator_train_start_steps - self.lambda_adv = lambda_adv - self.state = UpdaterState(iteration=0, epoch=0) - - self.train_iterator = iter(self.dataloader) - - log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) - self.filehandler = logging.FileHandler(str(log_file)) - logger.addHandler(self.filehandler) - self.logger = logger - self.msg = "" - - def update_core(self, batch): - self.msg = "Rank: {}, ".format(dist.get_rank()) - losses_dict = {} - - # parse batch - wav, mel = batch - - # Generator - noise = paddle.randn(wav.shape) - - with timer() as t: - wav_ = self.generator(noise, mel) - # logging.debug(f"Generator takes {t.elapse}s.") - - # initialize - gen_loss = 0.0 - - ## Multi-resolution stft loss - with timer() as t: - sc_loss, mag_loss = self.criterion_stft(wav_, wav) - # logging.debug(f"Multi-resolution STFT loss takes {t.elapse}s.") - - report("train/spectral_convergence_loss", float(sc_loss)) - report("train/log_stft_magnitude_loss", float(mag_loss)) - - losses_dict["spectral_convergence_loss"] = float(sc_loss) - losses_dict["log_stft_magnitude_loss"] = float(mag_loss) - - gen_loss += sc_loss + mag_loss - - ## Adversarial loss - if self.state.iteration > self.discriminator_train_start_steps: - with timer() as t: - p_ = self.discriminator(wav_) - adv_loss = self.criterion_mse(p_, paddle.ones_like(p_)) - # logging.debug( - # f"Discriminator and adversarial loss takes {t.elapse}s") - report("train/adversarial_loss", float(adv_loss)) - losses_dict["adversarial_loss"] = float(adv_loss) - gen_loss += self.lambda_adv * adv_loss - - report("train/generator_loss", float(gen_loss)) - losses_dict["generator_loss"] = float(gen_loss) - - with timer() as t: - self.optimizer_g.clear_grad() - gen_loss.backward() - # logging.debug(f"Backward takes {t.elapse}s.") - - with timer() as t: - self.optimizer_g.step() - self.scheduler_g.step() - # logging.debug(f"Update takes {t.elapse}s.") - - # Disctiminator - if self.state.iteration > self.discriminator_train_start_steps: - with paddle.no_grad(): - wav_ = self.generator(noise, mel) - p = self.discriminator(wav) - p_ = self.discriminator(wav_.detach()) - real_loss = self.criterion_mse(p, paddle.ones_like(p)) - fake_loss = self.criterion_mse(p_, paddle.zeros_like(p_)) - dis_loss = real_loss + fake_loss - report("train/real_loss", float(real_loss)) - report("train/fake_loss", float(fake_loss)) - report("train/discriminator_loss", float(dis_loss)) - losses_dict["real_loss"] = float(real_loss) - losses_dict["fake_loss"] = float(fake_loss) - losses_dict["discriminator_loss"] = float(dis_loss) - - self.optimizer_d.clear_grad() - dis_loss.backward() - - self.optimizer_d.step() - self.scheduler_d.step() - - self.msg += ', '.join('{}: {:>.6f}'.format(k, v) - for k, v in losses_dict.items()) - - -class PWGEvaluator(StandardEvaluator): - def __init__(self, - models, - criterions, - dataloader, - lambda_adv, - output_dir=None): - self.models = models - self.generator = models['generator'] - self.discriminator = models['discriminator'] - - self.criterions = criterions - self.criterion_stft = criterions['stft'] - self.criterion_mse = criterions['mse'] - - self.dataloader = dataloader - self.lambda_adv = lambda_adv - - log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) - self.filehandler = logging.FileHandler(str(log_file)) - logger.addHandler(self.filehandler) - self.logger = logger - self.msg = "" - - def evaluate_core(self, batch): - # logging.debug("Evaluate: ") - self.msg = "Evaluate: " - losses_dict = {} - - wav, mel = batch - noise = paddle.randn(wav.shape) - - with timer() as t: - wav_ = self.generator(noise, mel) - # logging.debug(f"Generator takes {t.elapse}s") - - ## Adversarial loss - with timer() as t: - p_ = self.discriminator(wav_) - adv_loss = self.criterion_mse(p_, paddle.ones_like(p_)) - # logging.debug( - # f"Discriminator and adversarial loss takes {t.elapse}s") - report("eval/adversarial_loss", float(adv_loss)) - losses_dict["adversarial_loss"] = float(adv_loss) - gen_loss = self.lambda_adv * adv_loss - - # stft loss - with timer() as t: - sc_loss, mag_loss = self.criterion_stft(wav_, wav) - # logging.debug(f"Multi-resolution STFT loss takes {t.elapse}s") - - report("eval/spectral_convergence_loss", float(sc_loss)) - report("eval/log_stft_magnitude_loss", float(mag_loss)) - losses_dict["spectral_convergence_loss"] = float(sc_loss) - losses_dict["log_stft_magnitude_loss"] = float(mag_loss) - gen_loss += sc_loss + mag_loss - - report("eval/generator_loss", float(gen_loss)) - losses_dict["generator_loss"] = float(gen_loss) - - # Disctiminator - p = self.discriminator(wav) - real_loss = self.criterion_mse(p, paddle.ones_like(p)) - fake_loss = self.criterion_mse(p_, paddle.zeros_like(p_)) - dis_loss = real_loss + fake_loss - report("eval/real_loss", float(real_loss)) - report("eval/fake_loss", float(fake_loss)) - report("eval/discriminator_loss", float(dis_loss)) - - losses_dict["real_loss"] = float(real_loss) - losses_dict["fake_loss"] = float(fake_loss) - losses_dict["discriminator_loss"] = float(dis_loss) - - self.msg += ', '.join('{}: {:>.6f}'.format(k, v) - for k, v in losses_dict.items()) - self.logger.info(self.msg) diff --git a/parakeet/training/extensions/visualizer.py b/parakeet/training/extensions/visualizer.py index 1c66ad8d..bc62c976 100644 --- a/parakeet/training/extensions/visualizer.py +++ b/parakeet/training/extensions/visualizer.py @@ -11,6 +11,8 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from visualdl import LogWriter + from parakeet.training import extension from parakeet.training.trainer import Trainer @@ -26,8 +28,8 @@ class VisualDL(extension.Extension): default_name = 'visualdl' priority = extension.PRIORITY_READER - def __init__(self, writer): - self.writer = writer + def __init__(self, logdir): + self.writer = LogWriter(str(logdir)) def __call__(self, trainer: Trainer): for k, v in trainer.observation.items(): -- GitLab