未验证 提交 8641608f 编写于 作者: Y YangZhou 提交者: GitHub

Merge pull request #2015 from zh794390558/endpoint

[server][asr] support endpoint for conformer streaming model
...@@ -51,12 +51,12 @@ repos: ...@@ -51,12 +51,12 @@ repos:
language: system language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
exclude: (?=speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$ exclude: (?=speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$
- id: copyright_checker #- id: copyright_checker
name: copyright_checker # name: copyright_checker
entry: python .pre-commit-hooks/copyright-check.hook # entry: python .pre-commit-hooks/copyright-check.hook
language: system # language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$ # files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$ # exclude: (?=third_party|pypinyin|speechx/speechx/kaldi|speechx/patch|speechx/tools/fstbin|speechx/tools/lmbin).*(\.cpp|\.cc|\.h|\.py)$
- repo: https://github.com/asottile/reorder_python_imports - repo: https://github.com/asottile/reorder_python_imports
rev: v2.4.0 rev: v2.4.0
hooks: hooks:
......
...@@ -31,6 +31,8 @@ asr_online: ...@@ -31,6 +31,8 @@ asr_online:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring" decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True
......
...@@ -30,6 +30,9 @@ asr_online: ...@@ -30,6 +30,9 @@ asr_online:
decode_method: decode_method:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True
......
...@@ -31,6 +31,8 @@ asr_online: ...@@ -31,6 +31,8 @@ asr_online:
force_yes: True force_yes: True
device: 'cpu' # cpu or gpu:id device: 'cpu' # cpu or gpu:id
decode_method: "attention_rescoring" decode_method: "attention_rescoring"
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True
......
...@@ -6,3 +6,4 @@ paddlespeech_server start --config_file conf/punc_application.yaml &> punc.log & ...@@ -6,3 +6,4 @@ paddlespeech_server start --config_file conf/punc_application.yaml &> punc.log &
# nohup python3 streaming_asr_server.py --config_file conf/ws_conformer_application.yaml > streaming_asr.log 2>&1 & # nohup python3 streaming_asr_server.py --config_file conf/ws_conformer_application.yaml > streaming_asr.log 2>&1 &
paddlespeech_server start --config_file conf/ws_conformer_application.yaml &> streaming_asr.log & paddlespeech_server start --config_file conf/ws_conformer_application.yaml &> streaming_asr.log &
...@@ -10,3 +10,4 @@ paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --input ./zh.wa ...@@ -10,3 +10,4 @@ paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --input ./zh.wa
# If `127.0.0.1` is not accessible, you need to use the actual service IP address. # If `127.0.0.1` is not accessible, you need to use the actual service IP address.
# python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --wavfile ./zh.wav # python3 websocket_client.py --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --wavfile ./zh.wav
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --input ./zh.wav paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8290 --punc.server_ip 127.0.0.1 --punc.port 8190 --input ./zh.wav
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import argparse import argparse
import json import json
import os import os
......
...@@ -145,4 +145,3 @@ for com, info in _commands.items(): ...@@ -145,4 +145,3 @@ for com, info in _commands.items():
name='paddlespeech.{}'.format(com), name='paddlespeech.{}'.format(com),
description=info[0], description=info[0],
cls='paddlespeech.cli.{}.{}'.format(com, info[1])) cls='paddlespeech.cli.{}.{}'.format(com, info[1]))
\ No newline at end of file
...@@ -21,12 +21,12 @@ from typing import Union ...@@ -21,12 +21,12 @@ from typing import Union
import numpy as np import numpy as np
import paddle import paddle
import yaml import yaml
from paddleaudio import load
from paddleaudio.features import LogMelSpectrogram
from ..executor import BaseExecutor from ..executor import BaseExecutor
from ..log import logger from ..log import logger
from ..utils import stats_wrapper from ..utils import stats_wrapper
from paddleaudio import load
from paddleaudio.features import LogMelSpectrogram
__all__ = ['CLSExecutor'] __all__ = ['CLSExecutor']
......
...@@ -22,13 +22,13 @@ from typing import Union ...@@ -22,13 +22,13 @@ from typing import Union
import paddle import paddle
import soundfile import soundfile
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from yacs.config import CfgNode from yacs.config import CfgNode
from ..executor import BaseExecutor from ..executor import BaseExecutor
from ..log import logger from ..log import logger
from ..utils import stats_wrapper from ..utils import stats_wrapper
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddlespeech.vector.io.batch import feature_normalize from paddlespeech.vector.io.batch import feature_normalize
from paddlespeech.vector.modules.sid_model import SpeakerIdetification from paddlespeech.vector.modules.sid_model import SpeakerIdetification
......
...@@ -22,8 +22,7 @@ model_alias = { ...@@ -22,8 +22,7 @@ model_alias = {
# -------------- ASR -------------- # -------------- ASR --------------
# --------------------------------- # ---------------------------------
"deepspeech2offline": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"], "deepspeech2offline": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
"deepspeech2online": "deepspeech2online": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
["paddlespeech.s2t.models.ds2:DeepSpeech2Model"],
"conformer": ["paddlespeech.s2t.models.u2:U2Model"], "conformer": ["paddlespeech.s2t.models.u2:U2Model"],
"conformer_online": ["paddlespeech.s2t.models.u2:U2Model"], "conformer_online": ["paddlespeech.s2t.models.u2:U2Model"],
"transformer": ["paddlespeech.s2t.models.u2:U2Model"], "transformer": ["paddlespeech.s2t.models.u2:U2Model"],
......
...@@ -76,7 +76,8 @@ class CTCPrefixScorePD(): ...@@ -76,7 +76,8 @@ class CTCPrefixScorePD():
last_ids = [yi[-1] for yi in y] # last output label ids last_ids = [yi[-1] for yi in y] # last output label ids
n_bh = len(last_ids) # batch * hyps n_bh = len(last_ids) # batch * hyps
n_hyps = n_bh // self.batch # assuming each utterance has the same # of hyps n_hyps = n_bh // self.batch # assuming each utterance has the same # of hyps
self.scoring_num = paddle.shape(scoring_ids)[-1] if scoring_ids is not None else 0 self.scoring_num = paddle.shape(scoring_ids)[
-1] if scoring_ids is not None else 0
# prepare state info # prepare state info
if state is None: if state is None:
r_prev = paddle.full( r_prev = paddle.full(
......
...@@ -22,11 +22,9 @@ import numpy as np ...@@ -22,11 +22,9 @@ import numpy as np
import paddle import paddle
from paddle import distributed as dist from paddle import distributed as dist
from paddle import inference from paddle import inference
from paddle.io import DataLoader
from paddlespeech.s2t.io.dataloader import BatchDataLoader
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.io.dataset import ManifestDataset from paddlespeech.s2t.io.dataloader import BatchDataLoader
from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel from paddlespeech.s2t.models.ds2 import DeepSpeech2InferModel
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
from paddlespeech.s2t.training.gradclip import ClipGradByGlobalNormWithLog from paddlespeech.s2t.training.gradclip import ClipGradByGlobalNormWithLog
...@@ -238,8 +236,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer): ...@@ -238,8 +236,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def __init__(self, config, args): def __init__(self, config, args):
super().__init__(config, args) super().__init__(config, args)
self._text_featurizer = TextFeaturizer( self._text_featurizer = TextFeaturizer(
unit_type=config.unit_type, unit_type=config.unit_type, vocab=config.vocab_filepath)
vocab=config.vocab_filepath)
self.vocab_list = self._text_featurizer.vocab_list self.vocab_list = self._text_featurizer.vocab_list
def ordid2token(self, texts, texts_len): def ordid2token(self, texts, texts_len):
...@@ -248,7 +245,8 @@ class DeepSpeech2Tester(DeepSpeech2Trainer): ...@@ -248,7 +245,8 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
for text, n in zip(texts, texts_len): for text, n in zip(texts, texts_len):
n = n.numpy().item() n = n.numpy().item()
ids = text[:n] ids = text[:n]
trans.append(self._text_featurizer.defeaturize(ids.numpy().tolist())) trans.append(
self._text_featurizer.defeaturize(ids.numpy().tolist()))
return trans return trans
def compute_metrics(self, def compute_metrics(self,
......
...@@ -11,10 +11,11 @@ ...@@ -11,10 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys
from .deepspeech2 import DeepSpeech2InferModel from .deepspeech2 import DeepSpeech2InferModel
from .deepspeech2 import DeepSpeech2Model from .deepspeech2 import DeepSpeech2Model
from paddlespeech.s2t.utils import dynamic_pip_install from paddlespeech.s2t.utils import dynamic_pip_install
import sys
try: try:
import paddlespeech_ctcdecoders import paddlespeech_ctcdecoders
......
...@@ -372,11 +372,15 @@ class DeepSpeech2InferModel(DeepSpeech2Model): ...@@ -372,11 +372,15 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
def forward(self, audio_chunk, audio_chunk_lens, chunk_state_h_box=None, def forward(self,
audio_chunk,
audio_chunk_lens,
chunk_state_h_box=None,
chunk_state_c_box=None): chunk_state_c_box=None):
if self.encoder.rnn_direction == "forward": if self.encoder.rnn_direction == "forward":
eouts_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box = self.encoder( eouts_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box = self.encoder(
audio_chunk, audio_chunk_lens, chunk_state_h_box, chunk_state_c_box) audio_chunk, audio_chunk_lens, chunk_state_h_box,
chunk_state_c_box)
probs_chunk = self.decoder.softmax(eouts_chunk) probs_chunk = self.decoder.softmax(eouts_chunk)
return probs_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box return probs_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box
elif self.encoder.rnn_direction == "bidirect": elif self.encoder.rnn_direction == "bidirect":
...@@ -392,8 +396,8 @@ class DeepSpeech2InferModel(DeepSpeech2Model): ...@@ -392,8 +396,8 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
self, self,
input_spec=[ input_spec=[
paddle.static.InputSpec( paddle.static.InputSpec(
shape=[None, None, shape=[None, None, self.encoder.feat_size
self.encoder.feat_size], #[B, chunk_size, feat_dim] ], #[B, chunk_size, feat_dim]
dtype='float32'), dtype='float32'),
paddle.static.InputSpec(shape=[None], paddle.static.InputSpec(shape=[None],
dtype='int64'), # audio_length, [B] dtype='int64'), # audio_length, [B]
......
...@@ -90,7 +90,7 @@ class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface): ...@@ -90,7 +90,7 @@ class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
def _target_mask(self, ys_in_pad): def _target_mask(self, ys_in_pad):
ys_mask = ys_in_pad != 0 ys_mask = ys_in_pad != 0
m = subsequent_mask(paddle.shape(ys_mask)[-1])).unsqueeze(0) m = subsequent_mask(paddle.shape(ys_mask)[-1]).unsqueeze(0)
return ys_mask.unsqueeze(-2) & m return ys_mask.unsqueeze(-2) & m
def forward(self, x: paddle.Tensor, t: paddle.Tensor def forward(self, x: paddle.Tensor, t: paddle.Tensor
......
...@@ -11,7 +11,6 @@ ...@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from contextlib import nullcontext from contextlib import nullcontext
import paddle import paddle
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys
from typing import Union from typing import Union
import paddle import paddle
...@@ -22,7 +23,6 @@ from paddlespeech.s2t.modules.align import Linear ...@@ -22,7 +23,6 @@ from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.modules.loss import CTCLoss from paddlespeech.s2t.modules.loss import CTCLoss
from paddlespeech.s2t.utils import ctc_utils from paddlespeech.s2t.utils import ctc_utils
from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.log import Log
import sys
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
......
...@@ -82,7 +82,8 @@ def pad_sequence(sequences: List[paddle.Tensor], ...@@ -82,7 +82,8 @@ def pad_sequence(sequences: List[paddle.Tensor],
max_size = paddle.shape(sequences[0]) max_size = paddle.shape(sequences[0])
# (TODO Hui Zhang): slice not supprot `end==start` # (TODO Hui Zhang): slice not supprot `end==start`
# trailing_dims = max_size[1:] # trailing_dims = max_size[1:]
trailing_dims = tuple(max_size[1:].numpy().tolist()) if sequences[0].ndim >= 2 else () trailing_dims = tuple(
max_size[1:].numpy().tolist()) if sequences[0].ndim >= 2 else ()
max_len = max([s.shape[0] for s in sequences]) max_len = max([s.shape[0] for s in sequences])
if batch_first: if batch_first:
out_dims = (len(sequences), max_len) + trailing_dims out_dims = (len(sequences), max_len) + trailing_dims
......
...@@ -29,6 +29,7 @@ asr_online: ...@@ -29,6 +29,7 @@ asr_online:
cfg_path: cfg_path:
decode_method: decode_method:
force_yes: True force_yes: True
device: # cpu or gpu:id
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
......
...@@ -30,6 +30,8 @@ asr_online: ...@@ -30,6 +30,8 @@ asr_online:
decode_method: decode_method:
force_yes: True force_yes: True
device: # cpu or gpu:id device: # cpu or gpu:id
continuous_decoding: True # enable continue decoding when endpoint detected
am_predictor_conf: am_predictor_conf:
device: # set 'gpu:id' or 'cpu' device: # set 'gpu:id' or 'cpu'
switch_ir_optim: True switch_ir_optim: True
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import numpy as np
from paddlespeech.cli.log import logger
@dataclass
class OnlineCTCEndpointRule:
must_contain_nonsilence: bool = True
min_trailing_silence: int = 1000
min_utterance_length: int = 0
@dataclass
class OnlineCTCEndpoingOpt:
frame_shift_in_ms: int = 10
blank: int = 0 # blank id, that we consider as silence for purposes of endpointing.
blank_threshold: float = 0.8 # above blank threshold is silence
# We support three rules. We terminate decoding if ANY of these rules
# evaluates to "true". If you want to add more rules, do it by changing this
# code. If you want to disable a rule, you can set the silence-timeout for
# that rule to a very large number.
# rule1 times out after 5 seconds of silence, even if we decoded nothing.
rule1: OnlineCTCEndpointRule = OnlineCTCEndpointRule(False, 5000, 0)
# rule4 times out after 1.0 seconds of silence after decoding something,
# even if we did not reach a final-state at all.
rule2: OnlineCTCEndpointRule = OnlineCTCEndpointRule(True, 1000, 0)
# rule5 times out after the utterance is 20 seconds long, regardless of
# anything else.
rule3: OnlineCTCEndpointRule = OnlineCTCEndpointRule(False, 0, 20000)
class OnlineCTCEndpoint:
"""
[END-TO-END AUTOMATIC SPEECH RECOGNITION INTEGRATED WITH CTC-BASED VOICE ACTIVITY DETECTION](https://arxiv.org/pdf/2002.00551.pdf)
"""
def __init__(self, opts: OnlineCTCEndpoingOpt):
self.opts = opts
logger.info(f"Endpont Opts: {opts}")
self.frame_shift_in_ms = opts.frame_shift_in_ms
self.num_frames_decoded = 0
self.trailing_silence_frames = 0
self.reset()
def reset(self):
self.num_frames_decoded = 0
self.trailing_silence_frames = 0
def rule_activated(self,
rule: OnlineCTCEndpointRule,
rule_name: str,
decoding_something: bool,
trailine_silence: int,
utterance_length: int) -> bool:
ans = (
decoding_something or (not rule.must_contain_nonsilence)
) and trailine_silence >= rule.min_trailing_silence and utterance_length >= rule.min_utterance_length
if (ans):
logger.info(f"Endpoint Rule: {rule_name} activated: {rule}")
return ans
def endpoint_detected(self,
ctc_log_probs: np.ndarray,
decoding_something: bool) -> bool:
"""detect endpoint.
Args:
ctc_log_probs (np.ndarray): (T, D)
decoding_something (bool): contain nonsilince.
Returns:
bool: whether endpoint detected.
"""
for logprob in ctc_log_probs:
blank_prob = np.exp(logprob[self.opts.blank])
self.num_frames_decoded += 1
if blank_prob > self.opts.blank_threshold:
self.trailing_silence_frames += 1
else:
self.trailing_silence_frames = 0
assert self.num_frames_decoded >= self.trailing_silence_frames
assert self.frame_shift_in_ms > 0
utterance_length = self.num_frames_decoded * self.frame_shift_in_ms
trailing_silence = self.trailing_silence_frames * self.frame_shift_in_ms
if self.rule_activated(self.opts.rule1, 'rule1', decoding_something,
trailing_silence, utterance_length):
return True
if self.rule_activated(self.opts.rule2, 'rule2', decoding_something,
trailing_silence, utterance_length):
return True
if self.rule_activated(self.opts.rule3, 'rule3', decoding_something,
trailing_silence, utterance_length):
return True
return False
...@@ -30,8 +30,29 @@ class CTCPrefixBeamSearch: ...@@ -30,8 +30,29 @@ class CTCPrefixBeamSearch:
config (yacs.config.CfgNode): the ctc prefix beam search configuration config (yacs.config.CfgNode): the ctc prefix beam search configuration
""" """
self.config = config self.config = config
# beam size
self.first_beam_size = self.config.beam_size
# TODO(support second beam size)
self.second_beam_size = int(self.first_beam_size * 1.0)
logger.info(
f"first and second beam size: {self.first_beam_size}, {self.second_beam_size}"
)
# state
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
self.reset() self.reset()
def reset(self):
"""Rest the search cache value
"""
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
@paddle.no_grad() @paddle.no_grad()
def search(self, ctc_probs, device, blank_id=0): def search(self, ctc_probs, device, blank_id=0):
"""ctc prefix beam search method decode a chunk feature """ctc prefix beam search method decode a chunk feature
...@@ -47,12 +68,17 @@ class CTCPrefixBeamSearch: ...@@ -47,12 +68,17 @@ class CTCPrefixBeamSearch:
""" """
# decode # decode
logger.info("start to ctc prefix search") logger.info("start to ctc prefix search")
assert len(ctc_probs.shape) == 2
batch_size = 1 batch_size = 1
beam_size = self.config.beam_size
maxlen = ctc_probs.shape[0]
assert len(ctc_probs.shape) == 2 vocab_size = ctc_probs.shape[1]
first_beam_size = min(self.first_beam_size, vocab_size)
second_beam_size = min(self.second_beam_size, vocab_size)
logger.info(
f"effect first and second beam size: {self.first_beam_size}, {self.second_beam_size}"
)
maxlen = ctc_probs.shape[0]
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score)) # cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
# 0. blank_ending_score, # 0. blank_ending_score,
...@@ -75,7 +101,8 @@ class CTCPrefixBeamSearch: ...@@ -75,7 +101,8 @@ class CTCPrefixBeamSearch:
# 2.1 First beam prune: select topk best # 2.1 First beam prune: select topk best
# do token passing process # do token passing process
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,) top_k_logp, top_k_index = logp.topk(
first_beam_size) # (first_beam_size,)
for s in top_k_index: for s in top_k_index:
s = s.item() s = s.item()
ps = logp[s].item() ps = logp[s].item()
...@@ -148,7 +175,7 @@ class CTCPrefixBeamSearch: ...@@ -148,7 +175,7 @@ class CTCPrefixBeamSearch:
next_hyps.items(), next_hyps.items(),
key=lambda x: log_add([x[1][0], x[1][1]]), key=lambda x: log_add([x[1][0], x[1][1]]),
reverse=True) reverse=True)
self.cur_hyps = next_hyps[:beam_size] self.cur_hyps = next_hyps[:second_beam_size]
# 2.3 update the absolute time step # 2.3 update the absolute time step
self.abs_time_step += 1 self.abs_time_step += 1
...@@ -163,7 +190,7 @@ class CTCPrefixBeamSearch: ...@@ -163,7 +190,7 @@ class CTCPrefixBeamSearch:
"""Return the one best result """Return the one best result
Returns: Returns:
list: the one best result list: the one best result, List[str]
""" """
return [self.hyps[0][0]] return [self.hyps[0][0]]
...@@ -171,17 +198,10 @@ class CTCPrefixBeamSearch: ...@@ -171,17 +198,10 @@ class CTCPrefixBeamSearch:
"""Return the search hyps """Return the search hyps
Returns: Returns:
list: return the search hyps list: return the search hyps, List[Tuple[str, float, ...]]
""" """
return self.hyps return self.hyps
def reset(self):
"""Rest the search cache value
"""
self.cur_hyps = None
self.hyps = None
self.abs_time_step = 0
def finalize_search(self): def finalize_search(self):
"""do nothing in ctc_prefix_beam_search """do nothing in ctc_prefix_beam_search
""" """
......
...@@ -42,7 +42,6 @@ class TTSServerExecutor(TTSExecutor): ...@@ -42,7 +42,6 @@ class TTSServerExecutor(TTSExecutor):
self.task_resource = CommonTaskResource( self.task_resource = CommonTaskResource(
task='tts', model_format='dynamic', inference_mode='online') task='tts', model_format='dynamic', inference_mode='online')
def get_model_info(self, def get_model_info(self,
field: str, field: str,
model_name: str, model_name: str,
......
...@@ -19,7 +19,6 @@ from fastapi import WebSocketDisconnect ...@@ -19,7 +19,6 @@ from fastapi import WebSocketDisconnect
from starlette.websockets import WebSocketState as WebSocketState from starlette.websockets import WebSocketState as WebSocketState
from paddlespeech.cli.log import logger from paddlespeech.cli.log import logger
from paddlespeech.server.engine.asr.online.asr_engine import PaddleASRConnectionHanddler
from paddlespeech.server.engine.engine_pool import get_engine_pool from paddlespeech.server.engine.engine_pool import get_engine_pool
router = APIRouter() router = APIRouter()
...@@ -38,7 +37,7 @@ async def websocket_endpoint(websocket: WebSocket): ...@@ -38,7 +37,7 @@ async def websocket_endpoint(websocket: WebSocket):
#2. if we accept the websocket headers, we will get the online asr engine instance #2. if we accept the websocket headers, we will get the online asr engine instance
engine_pool = get_engine_pool() engine_pool = get_engine_pool()
asr_engine = engine_pool['asr'] asr_model = engine_pool['asr']
#3. each websocket connection, we will create an PaddleASRConnectionHanddler to process such audio #3. each websocket connection, we will create an PaddleASRConnectionHanddler to process such audio
# and each connection has its own connection instance to process the request # and each connection has its own connection instance to process the request
...@@ -70,7 +69,8 @@ async def websocket_endpoint(websocket: WebSocket): ...@@ -70,7 +69,8 @@ async def websocket_endpoint(websocket: WebSocket):
resp = {"status": "ok", "signal": "server_ready"} resp = {"status": "ok", "signal": "server_ready"}
# do something at begining here # do something at begining here
# create the instance to process the audio # create the instance to process the audio
connection_handler = PaddleASRConnectionHanddler(asr_engine) #connection_handler = PaddleASRConnectionHanddler(asr_model)
connection_handler = asr_model.new_handler()
await websocket.send_json(resp) await websocket.send_json(resp)
elif message['signal'] == 'end': elif message['signal'] == 'end':
# reset single engine for an new connection # reset single engine for an new connection
...@@ -100,11 +100,34 @@ async def websocket_endpoint(websocket: WebSocket): ...@@ -100,11 +100,34 @@ async def websocket_endpoint(websocket: WebSocket):
# and decode for the result in this package data # and decode for the result in this package data
connection_handler.extract_feat(message) connection_handler.extract_feat(message)
connection_handler.decode(is_finished=False) connection_handler.decode(is_finished=False)
if connection_handler.endpoint_state:
logger.info("endpoint: detected and rescoring.")
connection_handler.rescoring()
word_time_stamp = connection_handler.get_word_time_stamp()
asr_results = connection_handler.get_result() asr_results = connection_handler.get_result()
# return the current period result if connection_handler.endpoint_state:
# if the engine create the vad instance, this connection will have many period results if connection_handler.continuous_decoding:
logger.info("endpoint: continue decoding")
connection_handler.reset_continuous_decoding()
else:
logger.info("endpoint: exit decoding")
# ending by endpoint
resp = {
"status": "ok",
"signal": "finished",
'result': asr_results,
'times': word_time_stamp
}
await websocket.send_json(resp)
break
# return the current partial result
# if the engine create the vad instance, this connection will have many partial results
resp = {'result': asr_results} resp = {'result': asr_results}
await websocket.send_json(resp) await websocket.send_json(resp)
except WebSocketDisconnect as e: except WebSocketDisconnect as e:
logger.error(e) logger.error(e)
...@@ -140,10 +140,7 @@ def parse_args(): ...@@ -140,10 +140,7 @@ def parse_args():
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
...@@ -179,10 +176,7 @@ def parse_args(): ...@@ -179,10 +176,7 @@ def parse_args():
], ],
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(
......
...@@ -174,10 +174,7 @@ def parse_args(): ...@@ -174,10 +174,7 @@ def parse_args():
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
...@@ -220,10 +217,7 @@ def parse_args(): ...@@ -220,10 +217,7 @@ def parse_args():
], ],
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(
......
...@@ -131,10 +131,7 @@ def parse_args(): ...@@ -131,10 +131,7 @@ def parse_args():
choices=['fastspeech2_aishell3', 'tacotron2_aishell3'], choices=['fastspeech2_aishell3', 'tacotron2_aishell3'],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
parser.add_argument( parser.add_argument(
'--am_config', '--am_config', type=str, default=None, help='Config of acoustic model.')
type=str,
default=None,
help='Config of acoustic model.')
parser.add_argument( parser.add_argument(
'--am_ckpt', '--am_ckpt',
type=str, type=str,
...@@ -160,10 +157,7 @@ def parse_args(): ...@@ -160,10 +157,7 @@ def parse_args():
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
parser.add_argument( parser.add_argument(
'--voc_config', '--voc_config', type=str, default=None, help='Config of voc.')
type=str,
default=None,
help='Config of voc.')
parser.add_argument( parser.add_argument(
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
parser.add_argument( parser.add_argument(
......
...@@ -56,7 +56,8 @@ class VITSUpdater(StandardUpdater): ...@@ -56,7 +56,8 @@ class VITSUpdater(StandardUpdater):
self.models: Dict[str, Layer] = models self.models: Dict[str, Layer] = models
# self.model = model # self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model self.model = model._layers if isinstance(model,
paddle.DataParallel) else model
self.optimizers = optimizers self.optimizers = optimizers
self.optimizer_g: Optimizer = optimizers['generator'] self.optimizer_g: Optimizer = optimizers['generator']
...@@ -225,7 +226,8 @@ class VITSEvaluator(StandardEvaluator): ...@@ -225,7 +226,8 @@ class VITSEvaluator(StandardEvaluator):
models = {"main": model} models = {"main": model}
self.models: Dict[str, Layer] = models self.models: Dict[str, Layer] = models
# self.model = model # self.model = model
self.model = model._layers if isinstance(model, paddle.DataParallel) else model self.model = model._layers if isinstance(model,
paddle.DataParallel) else model
self.criterions = criterions self.criterions = criterions
self.criterion_mel = criterions['mel'] self.criterion_mel = criterions['mel']
......
...@@ -971,6 +971,7 @@ class FeatureMatchLoss(nn.Layer): ...@@ -971,6 +971,7 @@ class FeatureMatchLoss(nn.Layer):
return feat_match_loss return feat_match_loss
# loss for VITS # loss for VITS
class KLDivergenceLoss(nn.Layer): class KLDivergenceLoss(nn.Layer):
"""KL divergence loss.""" """KL divergence loss."""
...@@ -981,8 +982,7 @@ class KLDivergenceLoss(nn.Layer): ...@@ -981,8 +982,7 @@ class KLDivergenceLoss(nn.Layer):
logs_q: paddle.Tensor, logs_q: paddle.Tensor,
m_p: paddle.Tensor, m_p: paddle.Tensor,
logs_p: paddle.Tensor, logs_p: paddle.Tensor,
z_mask: paddle.Tensor, z_mask: paddle.Tensor, ) -> paddle.Tensor:
) -> paddle.Tensor:
"""Calculate KL divergence loss. """Calculate KL divergence loss.
Args: Args:
...@@ -1002,7 +1002,7 @@ class KLDivergenceLoss(nn.Layer): ...@@ -1002,7 +1002,7 @@ class KLDivergenceLoss(nn.Layer):
logs_p = paddle.cast(logs_p, 'float32') logs_p = paddle.cast(logs_p, 'float32')
z_mask = paddle.cast(z_mask, 'float32') z_mask = paddle.cast(z_mask, 'float32')
kl = logs_p - logs_q - 0.5 kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * paddle.exp(-2.0 * logs_p) kl += 0.5 * ((z_p - m_p)**2) * paddle.exp(-2.0 * logs_p)
kl = paddle.sum(kl * z_mask) kl = paddle.sum(kl * z_mask)
loss = kl / paddle.sum(z_mask) loss = kl / paddle.sum(z_mask)
......
...@@ -25,4 +25,3 @@ netron exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel --port 8022 --host ...@@ -25,4 +25,3 @@ netron exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel --port 8022 --host
> Reminder: Only for developer, make sure you know what's it. > Reminder: Only for developer, make sure you know what's it.
* codelab - for speechx developer, using for test. * codelab - for speechx developer, using for test.
...@@ -4,4 +4,3 @@ ...@@ -4,4 +4,3 @@
> Reminder: Only for developer. > Reminder: Only for developer.
* codelab - for speechx developer, using for test. * codelab - for speechx developer, using for test.
...@@ -91,8 +91,8 @@ int main(int argc, char* argv[]) { ...@@ -91,8 +91,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data)); new ppspeech::Decodable(nnet, raw_data));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;
......
...@@ -93,8 +93,8 @@ int main(int argc, char* argv[]) { ...@@ -93,8 +93,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale)); new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;
......
...@@ -24,7 +24,8 @@ using std::unique_ptr; ...@@ -24,7 +24,8 @@ using std::unique_ptr;
Assembler::Assembler(AssemblerOptions opts, Assembler::Assembler(AssemblerOptions opts,
unique_ptr<FrontendInterface> base_extractor) { unique_ptr<FrontendInterface> base_extractor) {
frame_chunk_stride_ = opts.subsampling_rate * opts.nnet_decoder_chunk; frame_chunk_stride_ = opts.subsampling_rate * opts.nnet_decoder_chunk;
frame_chunk_size_ = (opts.nnet_decoder_chunk - 1) * opts.subsampling_rate + opts.receptive_filed_length; frame_chunk_size_ = (opts.nnet_decoder_chunk - 1) * opts.subsampling_rate +
opts.receptive_filed_length;
receptive_filed_length_ = opts.receptive_filed_length; receptive_filed_length_ = opts.receptive_filed_length;
base_extractor_ = std::move(base_extractor); base_extractor_ = std::move(base_extractor);
dim_ = base_extractor_->Dim(); dim_ = base_extractor_->Dim();
...@@ -72,7 +73,7 @@ bool Assembler::Compute(Vector<BaseFloat>* feats) { ...@@ -72,7 +73,7 @@ bool Assembler::Compute(Vector<BaseFloat>* feats) {
Vector<BaseFloat>& val = feature_cache_.front(); Vector<BaseFloat>& val = feature_cache_.front();
int32 start = counter * elem_dim; int32 start = counter * elem_dim;
feats->Range(start, elem_dim).CopyFromVec(val); feats->Range(start, elem_dim).CopyFromVec(val);
if (frame_chunk_size_ - counter <= cache_size ) { if (frame_chunk_size_ - counter <= cache_size) {
feature_cache_.push(val); feature_cache_.push(val);
} }
feature_cache_.pop(); feature_cache_.pop();
......
...@@ -47,15 +47,11 @@ class Assembler : public FrontendInterface { ...@@ -47,15 +47,11 @@ class Assembler : public FrontendInterface {
// feat dim // feat dim
virtual size_t Dim() const { return dim_; } virtual size_t Dim() const { return dim_; }
virtual void SetFinished() { virtual void SetFinished() { base_extractor_->SetFinished(); }
base_extractor_->SetFinished();
}
virtual bool IsFinished() const { return base_extractor_->IsFinished(); } virtual bool IsFinished() const { return base_extractor_->IsFinished(); }
virtual void Reset() { virtual void Reset() { base_extractor_->Reset(); }
base_extractor_->Reset();
}
private: private:
bool Compute(kaldi::Vector<kaldi::BaseFloat>* feats); bool Compute(kaldi::Vector<kaldi::BaseFloat>* feats);
......
...@@ -29,8 +29,7 @@ using kaldi::Matrix; ...@@ -29,8 +29,7 @@ using kaldi::Matrix;
using std::vector; using std::vector;
FbankComputer::FbankComputer(const Options& opts) FbankComputer::FbankComputer(const Options& opts)
: opts_(opts), : opts_(opts), computer_(opts) {}
computer_(opts) {}
int32 FbankComputer::Dim() const { int32 FbankComputer::Dim() const {
return opts_.mel_opts.num_bins + (opts_.use_energy ? 1 : 0); return opts_.mel_opts.num_bins + (opts_.use_energy ? 1 : 0);
...@@ -41,7 +40,8 @@ bool FbankComputer::NeedRawLogEnergy() { ...@@ -41,7 +40,8 @@ bool FbankComputer::NeedRawLogEnergy() {
} }
// Compute feat // Compute feat
bool FbankComputer::Compute(Vector<BaseFloat>* window, Vector<BaseFloat>* feat) { bool FbankComputer::Compute(Vector<BaseFloat>* window,
Vector<BaseFloat>* feat) {
RealFft(window, true); RealFft(window, true);
kaldi::ComputePowerSpectrum(window); kaldi::ComputePowerSpectrum(window);
const kaldi::MelBanks& mel_bank = *(computer_.GetMelBanks(1.0)); const kaldi::MelBanks& mel_bank = *(computer_.GetMelBanks(1.0));
......
...@@ -72,7 +72,7 @@ bool FeatureCache::Compute() { ...@@ -72,7 +72,7 @@ bool FeatureCache::Compute() {
bool result = base_extractor_->Read(&feature); bool result = base_extractor_->Read(&feature);
if (result == false || feature.Dim() == 0) return false; if (result == false || feature.Dim() == 0) return false;
int32 num_chunk = feature.Dim() / dim_ ; int32 num_chunk = feature.Dim() / dim_;
for (int chunk_idx = 0; chunk_idx < num_chunk; ++chunk_idx) { for (int chunk_idx = 0; chunk_idx < num_chunk; ++chunk_idx) {
int32 start = chunk_idx * dim_; int32 start = chunk_idx * dim_;
Vector<BaseFloat> feature_chunk(dim_); Vector<BaseFloat> feature_chunk(dim_);
......
...@@ -22,9 +22,7 @@ namespace ppspeech { ...@@ -22,9 +22,7 @@ namespace ppspeech {
struct FeatureCacheOptions { struct FeatureCacheOptions {
int32 max_size; int32 max_size;
int32 timeout; // ms int32 timeout; // ms
FeatureCacheOptions() FeatureCacheOptions() : max_size(kint16max), timeout(1) {}
: max_size(kint16max),
timeout(1) {}
}; };
class FeatureCache : public FrontendInterface { class FeatureCache : public FrontendInterface {
......
...@@ -39,6 +39,7 @@ class StreamingFeatureTpl : public FrontendInterface { ...@@ -39,6 +39,7 @@ class StreamingFeatureTpl : public FrontendInterface {
base_extractor_->Reset(); base_extractor_->Reset();
remained_wav_.Resize(0); remained_wav_.Resize(0);
} }
private: private:
bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves, bool Compute(const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats); kaldi::Vector<kaldi::BaseFloat>* feats);
......
...@@ -16,16 +16,15 @@ ...@@ -16,16 +16,15 @@
namespace ppspeech { namespace ppspeech {
template <class F> template <class F>
StreamingFeatureTpl<F>::StreamingFeatureTpl(const Options& opts, StreamingFeatureTpl<F>::StreamingFeatureTpl(
std::unique_ptr<FrontendInterface> base_extractor): const Options& opts, std::unique_ptr<FrontendInterface> base_extractor)
opts_(opts), : opts_(opts), computer_(opts), window_function_(opts.frame_opts) {
computer_(opts),
window_function_(opts.frame_opts) {
base_extractor_ = std::move(base_extractor); base_extractor_ = std::move(base_extractor);
} }
template <class F> template <class F>
void StreamingFeatureTpl<F>::Accept(const kaldi::VectorBase<kaldi::BaseFloat>& waves) { void StreamingFeatureTpl<F>::Accept(
const kaldi::VectorBase<kaldi::BaseFloat>& waves) {
base_extractor_->Accept(waves); base_extractor_->Accept(waves);
} }
...@@ -58,7 +57,8 @@ bool StreamingFeatureTpl<F>::Read(kaldi::Vector<kaldi::BaseFloat>* feats) { ...@@ -58,7 +57,8 @@ bool StreamingFeatureTpl<F>::Read(kaldi::Vector<kaldi::BaseFloat>* feats) {
// Compute feat // Compute feat
template <class F> template <class F>
bool StreamingFeatureTpl<F>::Compute(const kaldi::Vector<kaldi::BaseFloat>& waves, bool StreamingFeatureTpl<F>::Compute(
const kaldi::Vector<kaldi::BaseFloat>& waves,
kaldi::Vector<kaldi::BaseFloat>* feats) { kaldi::Vector<kaldi::BaseFloat>* feats) {
const kaldi::FrameExtractionOptions& frame_opts = const kaldi::FrameExtractionOptions& frame_opts =
computer_.GetFrameOptions(); computer_.GetFrameOptions();
...@@ -84,9 +84,11 @@ bool StreamingFeatureTpl<F>::Compute(const kaldi::Vector<kaldi::BaseFloat>& wave ...@@ -84,9 +84,11 @@ bool StreamingFeatureTpl<F>::Compute(const kaldi::Vector<kaldi::BaseFloat>& wave
&window, &window,
need_raw_log_energy ? &raw_log_energy : NULL); need_raw_log_energy ? &raw_log_energy : NULL);
kaldi::Vector<kaldi::BaseFloat> this_feature(computer_.Dim(), kaldi::kUndefined); kaldi::Vector<kaldi::BaseFloat> this_feature(computer_.Dim(),
kaldi::kUndefined);
computer_.Compute(&window, &this_feature); computer_.Compute(&window, &this_feature);
kaldi::SubVector<kaldi::BaseFloat> output_row(feats->Data() + frame * Dim(), Dim()); kaldi::SubVector<kaldi::BaseFloat> output_row(
feats->Data() + frame * Dim(), Dim());
output_row.CopyFromVec(this_feature); output_row.CopyFromVec(this_feature);
} }
return true; return true;
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#pragma once #pragma once
#include "frontend/audio/assembler.h"
#include "frontend/audio/audio_cache.h" #include "frontend/audio/audio_cache.h"
#include "frontend/audio/data_cache.h" #include "frontend/audio/data_cache.h"
#include "frontend/audio/fbank.h" #include "frontend/audio/fbank.h"
...@@ -23,7 +24,6 @@ ...@@ -23,7 +24,6 @@
#include "frontend/audio/frontend_itf.h" #include "frontend/audio/frontend_itf.h"
#include "frontend/audio/linear_spectrogram.h" #include "frontend/audio/linear_spectrogram.h"
#include "frontend/audio/normalizer.h" #include "frontend/audio/normalizer.h"
#include "frontend/audio/assembler.h"
namespace ppspeech { namespace ppspeech {
......
...@@ -28,15 +28,14 @@ using kaldi::VectorBase; ...@@ -28,15 +28,14 @@ using kaldi::VectorBase;
using kaldi::Matrix; using kaldi::Matrix;
using std::vector; using std::vector;
LinearSpectrogramComputer::LinearSpectrogramComputer( LinearSpectrogramComputer::LinearSpectrogramComputer(const Options& opts)
const Options& opts)
: opts_(opts) { : opts_(opts) {
kaldi::FeatureWindowFunction feature_window_function(opts.frame_opts); kaldi::FeatureWindowFunction feature_window_function(opts.frame_opts);
int32 window_size = opts.frame_opts.WindowSize(); int32 window_size = opts.frame_opts.WindowSize();
frame_length_ = window_size; frame_length_ = window_size;
dim_ = window_size / 2 + 1; dim_ = window_size / 2 + 1;
BaseFloat hanning_window_energy = kaldi::VecVec(feature_window_function.window, BaseFloat hanning_window_energy = kaldi::VecVec(
feature_window_function.window); feature_window_function.window, feature_window_function.window);
int32 sample_rate = opts.frame_opts.samp_freq; int32 sample_rate = opts.frame_opts.samp_freq;
scale_ = 2.0 / (hanning_window_energy * sample_rate); scale_ = 2.0 / (hanning_window_energy * sample_rate);
} }
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
#include "base/flags.h" #include "base/flags.h"
#include "base/log.h" #include "base/log.h"
#include "frontend/audio/data_cache.h"
#include "frontend/audio/assembler.h" #include "frontend/audio/assembler.h"
#include "frontend/audio/data_cache.h"
#include "kaldi/util/table-types.h" #include "kaldi/util/table-types.h"
#include "nnet/decodable.h" #include "nnet/decodable.h"
#include "nnet/paddle_nnet.h" #include "nnet/paddle_nnet.h"
...@@ -75,8 +75,8 @@ int main(int argc, char* argv[]) { ...@@ -75,8 +75,8 @@ int main(int argc, char* argv[]) {
std::shared_ptr<ppspeech::Decodable> decodable( std::shared_ptr<ppspeech::Decodable> decodable(
new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale)); new ppspeech::Decodable(nnet, raw_data, FLAGS_acoustic_scale));
int32 chunk_size = FLAGS_receptive_field_length int32 chunk_size = FLAGS_receptive_field_length +
+ (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate; (FLAGS_nnet_decoder_chunk - 1) * FLAGS_downsampling_rate;
int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk; int32 chunk_stride = FLAGS_downsampling_rate * FLAGS_nnet_decoder_chunk;
int32 receptive_field_length = FLAGS_receptive_field_length; int32 receptive_field_length = FLAGS_receptive_field_length;
LOG(INFO) << "chunk size (frame): " << chunk_size; LOG(INFO) << "chunk size (frame): " << chunk_size;
...@@ -130,7 +130,9 @@ int main(int argc, char* argv[]) { ...@@ -130,7 +130,9 @@ int main(int argc, char* argv[]) {
vector<kaldi::BaseFloat> prob; vector<kaldi::BaseFloat> prob;
while (decodable->FrameLikelihood(frame_idx, &prob)) { while (decodable->FrameLikelihood(frame_idx, &prob)) {
kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size()); kaldi::Vector<kaldi::BaseFloat> vec_tmp(prob.size());
std::memcpy(vec_tmp.Data(), prob.data(), sizeof(kaldi::BaseFloat)*prob.size()); std::memcpy(vec_tmp.Data(),
prob.data(),
sizeof(kaldi::BaseFloat) * prob.size());
prob_vec.push_back(vec_tmp); prob_vec.push_back(vec_tmp);
frame_idx++; frame_idx++;
} }
...@@ -142,7 +144,8 @@ int main(int argc, char* argv[]) { ...@@ -142,7 +144,8 @@ int main(int argc, char* argv[]) {
KALDI_LOG << " the nnet prob of " << utt << " is empty"; KALDI_LOG << " the nnet prob of " << utt << " is empty";
continue; continue;
} }
kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),prob_vec[0].Dim()); kaldi::Matrix<kaldi::BaseFloat> result(prob_vec.size(),
prob_vec[0].Dim());
for (int32 row_idx = 0; row_idx < prob_vec.size(); ++row_idx) { for (int32 row_idx = 0; row_idx < prob_vec.size(); ++row_idx) {
for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) { for (int32 col_idx = 0; col_idx < prob_vec[0].Dim(); ++col_idx) {
result(row_idx, col_idx) = prob_vec[row_idx](col_idx); result(row_idx, col_idx) = prob_vec[row_idx](col_idx);
......
...@@ -41,7 +41,7 @@ class WebSocketClient { ...@@ -41,7 +41,7 @@ class WebSocketClient {
void SendDataEnd(); void SendDataEnd();
bool Done() const { return done_; } bool Done() const { return done_; }
std::string GetResult() const { return result_; } std::string GetResult() const { return result_; }
std::string GetPartialResult() const { return partial_result_;} std::string GetPartialResult() const { return partial_result_; }
private: private:
void Connect(); void Connect();
......
...@@ -77,8 +77,9 @@ void ConnectionHandler::OnSpeechData(const beast::flat_buffer& buffer) { ...@@ -77,8 +77,9 @@ void ConnectionHandler::OnSpeechData(const beast::flat_buffer& buffer) {
std::string partial_result = recognizer_->GetPartialResult(); std::string partial_result = recognizer_->GetPartialResult();
json::value rv = { json::value rv = {{"status", "ok"},
{"status", "ok"}, {"type", "partial_result"}, {"result", partial_result}}; {"type", "partial_result"},
{"result", partial_result}};
ws_.text(true); ws_.text(true);
ws_.write(asio::buffer(json::serialize(rv))); ws_.write(asio::buffer(json::serialize(rv)));
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册